Robust ferromagnetism carried by antiferromagnetic domain walls

被引:23
|
作者
Hirose, Hishiro T. [1 ]
Yamaura, Jun-ichi [2 ]
Hiroi, Zenji [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Yokohama, Kanagawa 2268503, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
日本学术振兴会;
关键词
WEAK FERROMAGNETISM;
D O I
10.1038/srep42440
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Antiferromagnetic domain walls in lightly doped layered cuprates
    Horovitz, B
    PHYSICAL REVIEW B, 2004, 69 (14) : 140501 - 1
  • [22] Magnetic domain walls in antiferromagnetic topological insulator heterostructures
    Devlin, N. B.
    Ferrus, T.
    Barnes, C. H. W.
    PHYSICAL REVIEW B, 2021, 104 (05)
  • [23] ABSENCE OF ANTIFERROMAGNETIC DOMAIN WALLS IN MNF2
    PERSHAN, PS
    PHYSICAL REVIEW LETTERS, 1961, 7 (07) : 280 - &
  • [24] Electric and antiferromagnetic chiral textures at multiferroic domain walls
    J.-Y. Chauleau
    T. Chirac
    S. Fusil
    V. Garcia
    W. Akhtar
    J. Tranchida
    P. Thibaudeau
    I. Gross
    C. Blouzon
    A. Finco
    M. Bibes
    B. Dkhil
    D. D. Khalyavin
    P. Manuel
    V. Jacques
    N. Jaouen
    M. Viret
    Nature Materials, 2020, 19 : 386 - 390
  • [25] Dynamics of antiferromagnetic vortices in yttrium orthoferrite domain walls
    Chetkin M.V.
    Kurbatova Yu. N.
    Shapaeva T.B.
    Borshchegovskii O.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2007, 71 (11) : 1491 - 1493
  • [26] MAGNETIC DOMAINS AND DOMAIN WALLS IN ANTIFERROMAGNETS WITH A WEAK FERROMAGNETISM.
    Farztdinov, M.M.
    Shamsutdinov, M.A.
    1977, 19 (08): : 1417 - 1420
  • [27] Tailoring elastic and inelastic collisions of relativistic antiferromagnetic domain walls
    Otxoa, Ruben M.
    Tatara, Gen
    Roy, Pierre E.
    Chubykalo-Fesenko, Oksana
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Magnetic field control of antiferromagnetic domain walls in a thermal gradient
    Yanes, R.
    Rosa, M. Rodriguez
    Lopez-Diaz, L.
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [29] Theory of cuprate pseudogap as antiferromagnetic order with charged domain walls
    Markiewicz, R. S.
    Bansil, A.
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [30] Defect-driven antiferromagnetic domain walls in CuMnAs films
    Reimers, Sonka
    Kriegner, Dominik
    Gomonay, Olena
    Carbone, Dina
    Krizek, Filip
    Novak, Vit
    Campion, Richard P.
    Maccherozzi, Francesco
    Bjorling, Alexander
    Amin, Oliver J.
    Barton, Luke X.
    Poole, Stuart F.
    Omari, Khalid A.
    Michalicka, Jan
    Man, Ondrej
    Sinova, Jairo
    Jungwirth, Tomas
    Wadley, Peter
    Dhesi, Sarnjeet S.
    Edmonds, Kevin W.
    NATURE COMMUNICATIONS, 2022, 13 (01)