A ROBUST DPG METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS

被引:28
|
作者
Heuer, Norbert [1 ]
Karkulik, Michael [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
基金
美国国家科学基金会;
关键词
reaction-dominated diffusion; singularly perturbed problem; boundary layers; discontinuous Petrov-Galerkin method; PETROV-GALERKIN DISCRETIZATION; FINITE-ELEMENT METHODS; OPTIMAL TEST SPACE; BALANCED NORMS; CONVERGENCE; FORMULATION;
D O I
10.1137/15M1041304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a discontinuous Petrov-Galerkin method with optimal test functions for a reaction-dominated diffusion problem in two and three space dimensions. We start with an ultraweak formulation that comprises parameters alpha, beta to allow for general epsilon-dependent weightings of three field variables (epsilon being the small diffusion parameter). Specific values of alpha and beta imply robustness of the method, that is, a quasi-optimal error estimate with a constant that is independent of epsilon. Moreover, these values lead to a norm for the field variables that is known to be balanced in epsilon for model problems with typical boundary layers. Several numerical examples underline our theoretical estimates and reveal stability of approximations even for very small epsilon.
引用
收藏
页码:1218 / 1242
页数:25
相关论文
共 50 条
  • [11] Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems
    Mei, Yanjie
    Wang, Sulei
    Xu, Zhijie
    Song, Chuanjing
    Cheng, Yao
    SYMMETRY-BASEL, 2021, 13 (12):
  • [12] A Robust computational method for singularly perturbed coupled system of reaction-diffusion boundary-value problems
    Natesan, Srinivasan
    Deb, Briti Sundar
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 353 - 364
  • [13] ROBUST HIGH ORDER CONVERGENCE OF AN OVERLAPPING SCHWARZ METHOD FOR SINGULARLY PERTURBED SEMILINEAR REACTION-DIFFUSION PROBLEMS
    Rao, S. Chandra Sekhara
    Kumar, Sunil
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (05) : 509 - 521
  • [14] A robust domain decomposition method for singularly perturbed parabolic reaction-diffusion systems
    Sunil Kumar
    Joginder Singh
    Mukesh Kumar
    Journal of Mathematical Chemistry, 2019, 57 : 1557 - 1578
  • [15] A robust domain decomposition method for singularly perturbed parabolic reaction-diffusion systems
    Kumar, Sunil
    Singh, Joginder
    Kumar, Mukesh
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (05) : 1557 - 1578
  • [16] Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems
    Ainsworth, Mark
    Vejchodsky, Tomas
    NUMERISCHE MATHEMATIK, 2011, 119 (02) : 219 - 243
  • [17] Combined finite volume element method for singularly perturbed reaction-diffusion problems
    Phongthanapanich, Sutthisak
    Dechaumphai, Pramote
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) : 177 - 185
  • [18] ANALYSIS OF AN ALTERNATING DIRECTION METHOD APPLIED TO SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    Linss, Torsten
    Madden, Niall
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (03) : 507 - 519
  • [19] Nitsche Type Mortaring for Singularly Perturbed Reaction-diffusion Problems
    B. Heinrich
    K. Pönitz
    Computing, 2005, 75 : 257 - 279
  • [20] A New Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems
    Temel, Zelal
    Cakir, Musa
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 792 - 805