Argument-based assessment of predictive uncertainty of data-driven environmental models

被引:9
|
作者
Knusel, Benedikt [1 ,2 ]
Baumberger, Christoph [1 ]
Zumwald, Marius [1 ,2 ]
Bresch, David N. [1 ,3 ]
Knutti, Reto [2 ]
机构
[1] Swiss Fed Inst Technol, Inst Environm Decis, Univ Str 16, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland
[3] Fed Off Meteorol & Climatol MeteoSwiss, Operat Ctr 1, CH-8058 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Uncertainty; Data-driven models; Argument analysis; Predictions; Decision-making; DECISION-MAKING; EXPERT JUDGMENT; CLIMATE; FRAMEWORK;
D O I
10.1016/j.envsoft.2020.104754
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Data-driven predictive models for daily electricity consumption of academic buildings
    Akbar, Bilal
    Amber, Khuram Pervez
    Kousar, Anila
    Aslam, Muhammad Waqar
    Bashir, Muhammad Anser
    Khan, Muhammad Sajid
    AIMS ENERGY, 2020, 8 (05) : 783 - 801
  • [32] Model-predictive kinetic control with data-driven models on EAST
    Moreau, D.
    Wang, S.
    Qian, J. P.
    Yuan, Q.
    Huang, Y.
    Li, Y.
    Ding, S.
    Du, H.
    Gong, X.
    Li, M.
    Liu, H.
    Luo, Z.
    Zeng, L.
    Olofsson, E.
    Sammuli, B.
    Artaud, J. F.
    Ekedahl, A.
    Witrant, E.
    NUCLEAR FUSION, 2024, 64 (12)
  • [33] Simple data-driven models of intracellular calcium dynamics with predictive power
    Ventura, Alejandra C.
    Bruno, Luciana
    Dawson, Silvina Ponce
    PHYSICAL REVIEW E, 2006, 74 (01):
  • [34] Knowledge-Driven and Data-Driven Fuzzy Models for Predictive Mineral Potential Mapping
    Alok Porwal
    E. J. M. Carranza
    M. Hale
    Natural Resources Research, 2003, 12 (1) : 1 - 25
  • [35] Simplified data-driven models for model predictive control of residential buildings
    Lee, Hyeongseok
    Heo, Yeonsook
    ENERGY AND BUILDINGS, 2022, 265
  • [36] Comparison of Data-Driven Thermal Building Models for Model Predictive Control
    Steindl, Gernot
    Kastner, Wolfgang
    Stangl, Verena
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2019, 7 (04): : 730 - 742
  • [37] Data-driven predictive models for daily electricity consumption of academic buildings
    Akbar B.
    Amber K.P.
    Kousar A.
    Aslam M.W.
    Bashir M.A.
    Khan M.S.
    AIMS Energy, 2020, 8 (05): : 783 - 801
  • [38] Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data
    Udo, Wisdom
    Muhammad, Yar
    IEEE ACCESS, 2021, 9 : 162370 - 162388
  • [39] Managing uncertainty in data-driven simulation-based optimization
    Hullen, Gordon
    Zhai, Jianyuan
    Kim, Sun Hye
    Sinha, Anshuman
    Realff, Matthew J.
    Boukouvala, Fani
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 136
  • [40] A data-driven knowledge acquisition method based on system uncertainty
    Zhao, J
    Wang, GY
    ICCI 2005: Fourth IEEE International Conference on Cognitive Informatics - Proceedings, 2005, : 267 - 275