Blind source separation and deconvolution by dynamic component analysis

被引:2
|
作者
Attias, H
Schreiner, CE
机构
关键词
D O I
10.1109/NNSP.1997.622427
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive new unsupervised learning rules for blind separation of mixed and convolved sources. These rules are nonlinear in the signals and thus exploit high-order spatiotemporal statistics to achieve separation. The derivation is based on a global optimization formulation of the separation problem, yielding a stable algorithm. Different rules are obtained from frequency-and time-domain optimization. We illustrate the performance of this method by successfully separating convolutive mixtures of speech signals.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 50 条
  • [31] Optimal sparse representations for blind source separation and blind deconvolution: A learning approach
    Bronstein, MM
    Bronstein, AM
    Zibulevsky, M
    Zeevi, YY
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1815 - 1818
  • [32] Blind deconvolution and source separation: Recent results and open issues
    Regalia, PA
    MATHEMATICS IN SIGNAL PROCESSING V, 2002, (71): : 25 - 35
  • [33] Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion
    Zhang, Kun
    Chan, Lai-Wan
    NEUROCOMPUTING, 2010, 73 (13-15) : 2580 - 2588
  • [34] Multichannel blind deconvolution for source separation in convolutive mixtures of speech
    Kokkinakis, K
    Nandi, AK
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2006, 14 (01): : 200 - 212
  • [35] A scalable vlsi architecture for multichannel blind deconvolution and source separation
    Pan, H
    Xia, D
    Douglas, SC
    Smith, KF
    1998 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS-SIPS 98: DESIGN AND IMPLEMENTATION, 1998, : 297 - 306
  • [36] Blind source separation of chaotic laser signals by independent component analysis
    Kuraya, Masahiko
    Uchida, Atsushi
    Yoshimori, Shigeru
    Umeno, Ken
    OPTICS EXPRESS, 2008, 16 (02) : 725 - 730
  • [37] A geometric blind source separation method based on facet component analysis
    Penghang Yin
    Yuanchang Sun
    Jack Xin
    Signal, Image and Video Processing, 2016, 10 : 19 - 28
  • [38] A geometric blind source separation method based on facet component analysis
    Yin, Penghang
    Sun, Yuanchang
    Xin, Jack
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (01) : 19 - 28
  • [39] A Genetic Algorithm for Blind Source Separation Based on Independent Component Analysis
    Dadula, Cristina P.
    Dadios, Elmer P.
    2014 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2014,
  • [40] Hybridizing sparse component analysis with genetic algorithms for blind source separation
    Stadlthanner, K
    Theis, FJ
    Puntonet, CG
    Górriz, JM
    Tomé, AM
    Lang, EW
    BIOLOGICAL AND MEDICAL DATA ANALYSIS, PROCEEDINGS, 2005, 3745 : 137 - 148