Convergence of a positive nonlinear control volume finite element scheme for an anisotropic seawater intrusion model with sharp interfaces

被引:3
|
作者
Oulhaj, Ahmed Ait Hammou [1 ]
Maltese, David [2 ,3 ]
机构
[1] Ctr Rech Royallieu, Lab Math Appl Compiegne, Dept Genie Informat, BP 20529, F-60205 Compiegne, France
[2] Inst Polytech Sci Avancees, Ivrysur Seine, France
[3] Univ Lille, CNRS, UMR 8524, Inria,Lab Paul Painleve, Lille, France
关键词
anisotropic porous media; control of the entropy; cross-diffusion; nonlinear discretization; numerical analysis; seawater intrusion; unconfined aquifer; CROSS-DIFFUSION; FLOWS; DERIVATION; STABILITY; EXISTENCE; GRAVITY;
D O I
10.1002/num.22422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a sharp interface model in the context of seawater intrusion in an anisotropic unconfined aquifer. It is a degenerate parabolic system with cross-diffusion modeling the flow of fresh and saltwater. We study a nonlinear control volume finite element scheme. This scheme ensures the nonnegativity of the discrete solution without any restriction on the transmissibility coefficients. Moreover, it also provides a control on the entropy. The existence of a discrete solution and the convergence of this scheme are obtained, based on nonlinear stability results.
引用
收藏
页码:133 / 153
页数:21
相关论文
共 50 条
  • [21] A coupled nonlinear finite element scheme for anisotropic diffusion equation with nonlinear capacity term
    Fang, Jun
    Shen, Zhijun
    Cui, Xia
    Journal of Computational and Applied Mathematics, 2024, 438
  • [22] A coupled nonlinear finite element scheme for anisotropic diffusion equation with nonlinear capacity term
    Fang, Jun
    Shen, Zhijun
    Cui, Xia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [23] Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes
    Schneider, Martin
    Agelas, Leo
    Enchery, Guillaume
    Flemisch, Bernd
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 351 : 80 - 107
  • [24] A comparison of finite volume method and sharp model for two dimensional saltwater intrusion modeling
    Bouzouf, Boutaina
    Chen, Zhi
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2014, 41 (03) : 191 - 196
  • [25] Modelling saltwater intrusion by a 3-D sharp interface finite element model
    Sbai, MA
    Larabi, A
    De Smedt, F
    COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 201 - 208
  • [26] A new finite volume scheme for anisotropic diffusion problems on general grids:: convergence analysis
    Eymard, Robert
    Gallouet, Thierry
    Herbin, Raphaele
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (06) : 403 - 406
  • [27] NUMERICAL ANALYSIS OF A NONLINEARLY STABLE AND POSITIVE CONTROL VOLUME FINITE ELEMENT SCHEME FOR RICHARDS EQUATION WITH ANISOTROPY
    Oulhaj, Ahmed Ait Hammou
    Cances, Clement
    Chainais-Hillairet, Claire
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1533 - 1567
  • [28] Convergence analysis of finite volume scheme for nonlinear aggregation population balance equation
    Singh, Mehakpreet
    Kaur, Gurmeet
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) : 3236 - 3254
  • [29] Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations
    Guichard, Cindy
    Quenjel, El Houssaine
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (06)
  • [30] Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations
    Cindy Guichard
    El Houssaine Quenjel
    Advances in Computational Mathematics, 2022, 48