N-SIMPLEX CROUZEIX-RIVIART ELEMENT FOR THE SECOND ORDER ELLIPTIC/EIGENVALUE PROBLEMS

被引:0
|
作者
Yang, Yidu [1 ]
Lin, Fubiao [1 ]
Zhang, Zhimin [2 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
n-simplex; nonconforming Crouzeix-Raviart element; second order elliptic equation; error estimates; eigenvalues; lower bound; FINITE-ELEMENT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the n-simplex nonconforming Crouzeix-Raviart element in approximating the n-dimensional second-order elliptic boundary value problems and the associated eigenvalue problems. By using the second Strang Lemma, optimal rate of convergence is established under the discrete energy norm. The error bound is also valid for the eigenfunction approximations. In addition, when eigenfunctions are singular, we prove that the Crouzeix-Raviart element approximates exact eigenvalues from below. Moreover, our numerical experiments demonstrate that the lower bound property is also valid for smooth eigenfunctions, although a theoretical justification is lacking.
引用
收藏
页码:615 / 626
页数:12
相关论文
共 50 条