Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice

被引:6
|
作者
Kozielski, K. L. [1 ,2 ]
Jahanshahi, A. [3 ]
Gilbert, H. B. [1 ,4 ]
Yu, Y. [1 ]
Erin, O. [1 ,5 ]
Francisco, D. [1 ]
Alosaimi, F. [3 ]
Temel, Y. [3 ]
Sitti, M. [1 ,6 ,7 ,8 ]
机构
[1] Max Planck Inst Intelligent Syst, Dept Phys Intelligence, Stuttgart, Germany
[2] Karlsruhe Inst Technol, Inst Funct Interfaces, Dept Bioengn & Biosyst, Karlsruhe, Germany
[3] Maastricht Univ, Dept Neurosurg, Med Ctr, Maastricht, Netherlands
[4] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA
[5] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[6] Swiss Fed Inst Technol, Inst Biomed Engn, Zurich, Switzerland
[7] Koc Univ, Sch Med, Istanbul, Turkey
[8] Koc Univ, Coll Engn, Istanbul, Turkey
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 03期
关键词
MAGNETIC STIMULATION; ELECTRICAL-STIMULATION; NERVOUS-SYSTEM; CIRCUITS; NUCLEUS; SPEED;
D O I
10.1126/sciadv.abc4189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Devices that electrically modulate the deep brain have enabled important breakthroughs in the management of neurological and psychiatric disorders. Such devices are typically centimeter-scale, requiring surgical implantation and wired-in powering, which increases the risk of hemorrhage, infection, and damage during daily activity. Using smaller, remotely powered materials could lead to less invasive neuromodulation. Here, we present injectable, magnetoelectric nanoelectrodes that wirelessly transmit electrical signals to the brain in response to an external magnetic field. This mechanism of modulation requires no genetic modification of neural tissue, allows animals to freely move during stimulation, and uses nonresonant carrier frequencies. Using these nanoelectrodes, we demonstrate neuronal modulation in vitro and in deep brain targets in vivo. We also show that local subthalamic modulation promotes modulation in other regions connected via basal ganglia circuitry, leading to behavioral changes in mice. Magnetoelectric materials present a versatile platform technology for less invasive, deep brain neuromodulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents
    Kim, Evgenii
    Kum, Jeungeun
    Lee, Seung Hyun
    Kim, Hyungmin
    [J]. FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [22] BEHAVIOR ELICITED BY BRAIN STIMULATION IN FREELY MOVING VERTEBRATES
    STRUMWASSER, F
    CADE, TJ
    [J]. ANATOMICAL RECORD, 1957, 128 (03): : 630 - 631
  • [23] Optical manipulation of local cerebral blood flow in the deep brain of freely moving mice
    Abe, Yoshifumi
    Kwon, Soojin
    Oishi, Mitsuhiro
    Unekawa, Miyuki
    Takata, Norio
    Seki, Fumiko
    Koyama, Ryuta
    Abe, Manabu
    Sakimura, Kenji
    Masamoto, Kazuto
    Tomita, Yutaka
    Okano, Hideyuki
    Mushiake, Hajime
    Tanaka, Kenji F.
    [J]. CELL REPORTS, 2021, 36 (04):
  • [24] Wireless Power Transfer and Optogenetic Stimulation of Freely Moving Rodents
    Nassirinia, Farnaz
    Straver, Wil
    Hoebeek, Freek E.
    Serdijn, Wouter A.
    [J]. 2017 8TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2017, : 456 - 460
  • [25] Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device
    Hosain, Md Kamal
    Kouzani, Abbas Z.
    Tye, Susannah J.
    Abulseoud, Osama A.
    Amiet, Andrew
    Galehdar, Amir
    Kaynak, Akif
    Berk, Michael
    [J]. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2014, 2
  • [26] In vivo validation of a new portable stimulator for chronic deep brain stimulation in freely moving rats
    Tibar, Houyam
    Naudet, Frederic
    Kolbl, Florian
    Ribot, Bastien
    Faggiani, Emilie
    N'Kaoua, Gilles
    Renaud, Sylvie
    Lewis, Noelle
    Benazzouz, Abdelhamid
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2020, 333
  • [27] Beta Oscillations in Freely Moving Parkinson's Subjects Are Attenuated During Deep Brain Stimulation
    Quinn, Emma J.
    Blumenfeld, Zack
    Velisar, Anca
    Koop, Mandy Miller
    Shreve, Lauren A.
    Trager, Megan H.
    Hill, Bruce C.
    Kilbane, Camilla
    Henderson, Jaimie M.
    Bronte-Stewart, Helen
    [J]. MOVEMENT DISORDERS, 2015, 30 (13) : 1750 - 1758
  • [28] Pain and brain network oscillations in freely moving mice
    Zhang, J.
    Ponsel, S.
    Yanovsky, Y.
    Pilz, M.
    Brankack, J.
    Draguhn, A.
    [J]. ACTA PHYSIOLOGICA, 2019, 227
  • [29] Miniaturized wireless calcium recording system for freely moving mice
    Suzuki, Takayuki
    Kamoshida, Atsushi
    Homma, Chihiro
    Yamada, Kazuyuki
    Mizunaka, Masaru
    Arai, Kenichi
    Larkum, Matthew E.
    Miyawaki, Atsushi
    Murayama, Masanori
    [J]. JOURNAL OF PHYSIOLOGICAL SCIENCES, 2013, 63 : S289 - S289
  • [30] Towards chronic deep brain stimulation in freely moving hemiparkinsonian rats: applicability and functionality of a fully implantable stimulation system
    Apetz, Nadine
    Paralikar, Kunal
    Neumaier, Bernd
    Drzezga, Alexander
    Wiedermann, Dirk
    Iyer, Rajesh
    Munns, Gordon
    Scott, Erik
    Timmermann, Lars
    Endepols, Heike
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (03)