THREE-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS WITH η-PARALLEL RICCI TENSOR

被引:11
|
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
3-dimensional almost Kenmotsu manifold; eta-parallel parallel Ricci tensor; non-unimodular Lie group; CONTACT; 3-MANIFOLDS; LOCAL SYMMETRY;
D O I
10.4134/JKMS.j160252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the Ricci tensor of a three-dimensional almost Kenmotsu manifold satisfying. del(xi)h = 0, h not equal 0, is eta-parallel if and only if the manifold is locally isometric to either the Riemannian product H-2(-4) x R or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.
引用
收藏
页码:793 / 805
页数:13
相关论文
共 50 条
  • [1] RICCI SOLITONS ON THREE-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    Liu, Ximin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 91 - 100
  • [2] *-Ricci tensor on almost Kenmotsu 3-manifolds
    Dey, Dibakar
    Majhi, Pradip
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (13)
  • [3] *-Ricci tensor on three dimensional almost coKahler manifolds
    Venkatesha, V.
    De, Uday Chand
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    [J]. FILOMAT, 2023, 37 (06) : 1793 - 1802
  • [4] Almost Kenmotsu 3-h-manifolds with cyclic-parallel Ricci tensor
    Wang, Wenjie
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4206 - 4213
  • [5] Three-dimensional locally symmetric almost Kenmotsu manifolds
    Wang, Yaning
    [J]. ANNALES POLONICI MATHEMATICI, 2016, 116 (01) : 79 - 86
  • [6] Second Order Parallel Tensor on Almost Kenmotsu Manifolds
    Venkatesha, Venkatesha
    Naik, Devaraja Mallesha
    Vanli, Aysel-Turgut
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 191 - 203
  • [7] RICCI TENSORS ON THREE-DIMENSIONAL ALMOST COKAHLER MANIFOLDS
    Wang, Yaning
    [J]. KODAI MATHEMATICAL JOURNAL, 2016, 39 (03) : 469 - 483
  • [8] On the Ricci symmetry of almost Kenmotsu manifolds
    Dey, Dibakar
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2022, 53 (03): : 227 - 236
  • [9] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [10] *-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds
    Dai, Xinxin
    Zhao, Yan
    De, Uday Chand
    [J]. OPEN MATHEMATICS, 2019, 17 : 874 - 882