Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems

被引:94
|
作者
Chen, Mou [1 ]
Shao, Shu-Yi [1 ]
Shi, Peng [2 ,3 ,4 ]
Shi, Yan [5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
[3] Victoria Univ, Coll Engn & Sci, Melbourne, Vic 8001, Australia
[4] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[5] Tokai Univ, Grad Sch Sci & Technol, Kumamoto 8628652, Japan
基金
澳大利亚研究理事会;
关键词
Disturbance observer; fractional-order chaotic system; input saturation; synchronization control; LINEAR-SYSTEMS; STABILIZATION; STABILITY; DELAY;
D O I
10.1109/TCSII.2016.2563758
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief studies the synchronization control for the fractional-order chaotic system subject to input saturation and external unknown disturbances. To handle unknown disturbances, a disturbance observer is designed for the fractional-order chaotic system. A disturbance-observer-based synchronization control scheme is then developed. Under the synchronization control, the asymptotically convergent synchronization errors between two fractional-order chaotic systems can be achieved. The simulation results are presented to show the effectiveness of the proposed new design approach.
引用
收藏
页码:417 / 421
页数:5
相关论文
共 50 条
  • [41] High-Order Polynomial Observer Design for Robust Adaptive Synchronization of Uncertain Fractional-Order Chaotic Systems
    Kammogne Soup Tewa Alain
    [J]. Journal of Control, Automation and Electrical Systems, 2020, 31 : 1108 - 1120
  • [42] Observer-based sliding mode synchronization for a class of fractional-order chaotic neural networks
    Li, Yuan
    Hou, Bing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [43] Observer-based sliding mode synchronization for a class of fractional-order chaotic neural networks
    Yuan Li
    Bing Hou
    [J]. Advances in Difference Equations, 2018
  • [44] Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems
    Soukkou, Ammar
    Boukabou, Abdelkrim
    Goutas, Ahcene
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (07) : 679 - 713
  • [45] Robust H∞ Observer-Based Synchronization for a Class of Incommensurate Fractional Chaotic Systems
    Wang Baojin
    Zhao Linhui
    Liu Zhiyuan
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10532 - 10537
  • [46] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    [J]. CHINESE PHYSICS B, 2010, 19 (09)
  • [47] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    [J]. Chinese Physics B, 2010, 19 (09) : 237 - 242
  • [48] Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control
    Song, Chao
    Fei, Shumin
    Cao, Jinde
    Huang, Chuangxia
    [J]. MATHEMATICS, 2019, 7 (07)
  • [49] Observer-Based Approach for Fractional-Order Chaotic Synchronization and Communication
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    [J]. 2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 4281 - 4286
  • [50] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434