Rational design of the Z-scheme hollow-structure Co9S8/g-C3N4 as an efficient visible-light photocatalyst for tetracycline degradation

被引:11
|
作者
Wang, Xueying [1 ]
Han, Rui [1 ]
Liu, Hao [1 ]
Wang, Ximei [1 ]
Wei, Qin [1 ]
Luo, Chuannan [1 ]
机构
[1] Univ Jinan, Sch Chem & Chem Engn, Key Lab Interfacial React & Sensing Anal Univ Sha, Jinan 250022, Peoples R China
关键词
METAL-FREE PHOTOCATALYST; OXYGEN VACANCIES; HETEROJUNCTION PHOTOCATALYSTS; G-C3N4; NANOSHEETS; HYDROGEN EVOLUTION; REDUCTION; COMPOSITE; CR(VI); NANOPARTICLES; CONSTRUCTION;
D O I
10.1039/d0cp04739b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of photocatalysts with high catalytic activity that are capable of full utilization of solar energy is a challenge in the field of photocatalysis. Accordingly, in the present study, an efficient Z-scheme cage-structured Co9S8/g-C3N4 (c-CSCN) photocatalyst was constructed for the degradation of tetracycline antibiotics under visible-light irradiation. The Z-scheme charge-transfer mechanism accelerates the separation of photogenerated charge carriers and effectively improves photocatalytic activity. Moreover, c-CSCN has a hollow structure, allowing light to be reflected multiple times inside the cavity, thereby effectively improving the utilisation efficiency of solar energy. As a result, the photocatalytic activity of c-CSCN is 1.5-, 2.5-, and 5.8-times higher than those of sheet-type Co9S8/g-C3N4 (s-CSCN), c-Co9S8, and g-C3N4, respectively, for the degradation of tetracycline. c-CSCN maintains favourable photocatalytic activity over five consecutive degradation cycles, demonstrating its excellent stability. In addition, c-CSCN performs efficient tetracycline removal in different water substrates. Moreover, c-CSCN exhibits excellent ability to remove tetracycline under direct natural sunlight. This work fully demonstrates that c-CSCN has high catalytic activity and the potential for practical application as a wastewater treatment material.
引用
收藏
页码:3351 / 3360
页数:10
相关论文
共 50 条
  • [41] Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction
    Yu, Hongbin
    Wang, Danyang
    Zhao, Bin
    Lu, Ying
    Wang, Xinhong
    Zhu, Suiyi
    Qin, Weichao
    Huo, Mingxin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237 (237)
  • [42] Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity
    Luo, Jin
    Zhou, Xiaosong
    Ma, Lin
    Xu, Xuyao
    APPLIED SURFACE SCIENCE, 2016, 390 : 357 - 367
  • [43] Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen
    Liang, Mingxing
    Zhang, Zhaosheng
    Long, Run
    Wang, Ying
    Yu, Yajing
    Pei, Yuansheng
    ENVIRONMENTAL POLLUTION, 2020, 259
  • [44] Fabrication and characterization of novel Z-scheme photocatalyst WO3/g-C3N4 with high efficient visible light photocatalytic activity
    Chen, Shifu
    Hu, Yingfei
    Jiang, Xiaoliang
    Meng, Sugang
    Fu, Xianliang
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 149 : 512 - 521
  • [45] Coupling Z-Scheme g-C3N4/rGO/MoS2 Ternary Heterojunction as an Efficient Visible Light Photocatalyst for Hydrogen Evolution and RhB Degradation
    Wu, Bo
    Wang, Congwei
    Wang, Zheyan
    Shen, Kai
    Wang, Kaiying
    Li, Gang
    LANGMUIR, 2024, 40 (03) : 1931 - 1940
  • [46] Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity
    Zhang, Jinfeng
    Fu, Junwei
    Wang, Zhongliao
    Cheng, Bei
    Dai, Kai
    Ho, Wingkei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 841 - 850
  • [47] Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity
    Ma, Dong
    Wu, Juan
    Gao, Mengchun
    Xin, Yanjun
    Ma, Tianjin
    Sun, Yuying
    CHEMICAL ENGINEERING JOURNAL, 2016, 290 : 136 - 146
  • [48] Facile Construction of g-C3N4 Nanosheets/TiO2 Nanotube Arrays as Z-Scheme Photocatalyst with Enhanced Visible-Light Performance
    Zhou, Dantong
    Chen, Zhi
    Yang, Qian
    Shen, Cai
    Tang, Gao
    Zhao, Shilong
    Zhang, Jingji
    Chen, Da
    Wei, Qinhua
    Dong, Xiaoping
    CHEMCATCHEM, 2016, 8 (19) : 3064 - 3073
  • [49] Surface-engineering strategies for g-C3N4 as efficient visible-light photocatalyst
    Li, Zhijun
    Raziq, Fazal
    Liu, Chong
    Bai, Linlu
    Jing, Liqiang
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 6 : 57 - 62
  • [50] Highly efficient photocatalytic degradation of microcystin-LR with permonosulfate activated by visible-light over Z-scheme ZnO/g-C3N4: Degradation pathways and mechanism
    Wang, Xia
    Yang, Shilin
    Jin, Peng
    Peng, Anzhong
    Zhao, Xia
    Yang, Kai
    He, Jieli
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):