Implementation of a quantum controlled-SWAP gate with photonic circuits

被引:54
|
作者
Ono, Takafumi [1 ,2 ]
Okamoto, Ryo [1 ,2 ,3 ]
Tanida, Masato [1 ,2 ]
Hofmann, Holger F. [4 ]
Takeuchi, Shigeki [1 ,2 ,3 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[2] Osaka Univ, Inst Sci & Ind Res, Mihogaoka 8-1, Osaka 5670047, Japan
[3] Kyoto Univ, Dept Elect Sci & Engn, Nishikyo Ku, Kyoto 6158510, Japan
[4] Hiroshima Univ, Grad Sch Adv Sci Matter, Kagamiyama 1-3-1, Higashihiroshima 7398530, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
D O I
10.1038/srep45353
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e. g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Phase-controlled integrated photonic quantum circuits
    Smith, Brian J.
    Kundys, Dmytro
    Thomas-Peter, Nicholas
    Smith, P. G. R.
    Walmsley, I. A.
    [J]. OPTICS EXPRESS, 2009, 17 (16): : 13516 - 13525
  • [22] Proposal for a two-qubit quantum phase gate for quantum photonic integrated circuits
    Johne, Robert
    Fiore, Andrea
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [23] A Heuristic for Linear Nearest Neighbor Realization of Quantum Circuits by SWAP Gate Insertion Using N-Gate Lookahead
    Kole, Abhoy
    Datta, Kamalika
    Sengupta, Indranil
    [J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2016, 6 (01) : 62 - 72
  • [24] Realization of a photonic controlled-NOT gate sufficient for quantum computation
    Gasparoni, S
    Pan, JW
    Walther, P
    Rudolph, T
    Zeilinger, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 020504 - 1
  • [25] Realization of Quantum SWAP Gate Using Photonic Integrated Passive and Electro-optically Active Components
    MohammadNejad, Shahram
    KhodadadKashi, Anahita
    [J]. FIBER AND INTEGRATED OPTICS, 2019, 38 (02) : 117 - 136
  • [26] IMPLEMENTATION OF SWAP GATE AND FREDKIN GATE USING LINEAR OPTICAL ELEMENTS
    Zhu, Meng-Zheng
    Ye, Liu
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (03)
  • [27] Implementation scheme for quantum controlled phase-flip gate through quantum dot in slow-light photonic crystal waveguide
    Gao, Jie
    Sun, F. W.
    Wong, Chee Wei
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (15)
  • [28] Note on Implementation of Three-Qubit SWAP Gate
    Wei Hai-Rui
    Di Yao-Min
    Wang Yan
    Zhang Jie
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (01) : 78 - 82
  • [29] Note on Implementation of Three-Qubit SWAP Gate
    魏海瑞
    狄尧民
    王艳
    张洁
    [J]. Communications in Theoretical Physics, 2010, 53 (01) : 78 - 82
  • [30] Polarization-Dependent Mode Analyzer and Controlled-Z Gate in Ti:LiNbO3 Quantum Photonic Circuits
    Taherkhani, Masoomeh
    Nejad, Shahram Mohammad
    [J]. FIBER AND INTEGRATED OPTICS, 2012, 31 (06) : 355 - 368