Optimal Voltage Restoration in Electric Power System Using Genetic Algorithms

被引:0
|
作者
Ulinuha, A. [1 ]
Islam, S. M. [2 ]
Masoum, M. A. S. [2 ]
机构
[1] Univ Muhammadiyah Surakarta, Dept Elect Engn, Surakarta, Indonesia
[2] Curtin Univ Technol, Dept Elect & Comp Engn, Perth, WA, Australia
关键词
Energy loss; Genetic Algorithms; loss reduction; LTC and shunt capacitors; voltage improvement;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimal voltage restoration and loss minimization in distribution system using Genetic Algorithms (GAs) is presented. The optimization is carried out by scheduling Load Tap Changer (LTC) and shunt capacitors to simultaneously improve the voltage and minimize the energy loss. Two GAs are developed to determine the load interval division and the optimal schedule of the controllable devices, respectively. Encoding ability of the proposed method enables checking the fulfillment of switching constraints of any possible schedule prior to performing calculations. This will significantly reduce the computation burden due to unnecessary calculations for infeasible schedules. The optimization is performed for the IEEE 123-bus distribution system. The generated results indicate that the developed methods are effective for the optimal scheduling problem by providing voltage improvement and energy loss minimization.
引用
下载
收藏
页码:704 / +
页数:3
相关论文
共 50 条
  • [21] POWER RESTORATION IN MEDIUM VOLTAGE NETWORK USING MULTIAGENT SYSTEM
    Kovac, Miroslav
    Bracinik, Peter
    Hoge, Marek
    Roch, Marek
    Otcenasova, Alena
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 11 (02) : 65 - 72
  • [22] MULTIOBJECTIVE OPTIMAL DESIGN OF DUAL-INPUT POWER SYSTEM STABILIZER USING GENETIC ALGORITHMS
    Labdelaoui, Hilal
    Boudjema, Fares
    Boukhetala, Djamel
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2017, 62 (01): : 93 - 97
  • [23] Image Restoration Using Genetic Algorithms
    A. O. Trubakov
    N. V. Medvedkov
    Programming and Computer Software, 2022, 48 : 199 - 207
  • [24] Image Restoration Using Genetic Algorithms
    Trubakov, A. O.
    Medvedkov, N., V
    PROGRAMMING AND COMPUTER SOFTWARE, 2022, 48 (03) : 199 - 207
  • [25] Genetic algorithms for optimal reactive power compensation on the National Grid system
    Li, F
    Pilgrim, JD
    Dabeedin, C
    Chebbo, A
    Aggarwal, RK
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (01) : 493 - 500
  • [26] Genetic algorithms for optimal reactive power compensation on the national grid system
    Pilgrim, JD
    Li, F
    Aggarwal, RK
    2002 IEEE POWER ENGINEERING SOCIETY SUMMER MEETING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 524 - 529
  • [27] Predicting Electric Power System Restoration
    Duffey, Romney B.
    Ha, Taesung
    IEEE TIC-STH 09: 2009 IEEE TORONTO INTERNATIONAL CONFERENCE: SCIENCE AND TECHNOLOGY FOR HUMANITY, 2009, : 666 - 668
  • [28] Automatic Power System Identification using Genetic Algorithms
    Nowakova, Jana
    Platos, Jan
    Snasel, Vaclav
    2014 INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS), 2014, : 133 - 137
  • [29] Tuning of power system stabilizers using genetic algorithms
    AbdelMagid, YL
    Dawoud, MM
    ELECTRIC POWER SYSTEMS RESEARCH, 1996, 39 (02) : 137 - 143
  • [30] Optimal design of electric machine using genetic algorithms coupled with direct method
    Oh, YH
    Chung, TK
    Kim, MK
    Jung, HK
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1742 - 1745