Optimal Voltage Restoration in Electric Power System Using Genetic Algorithms

被引:0
|
作者
Ulinuha, A. [1 ]
Islam, S. M. [2 ]
Masoum, M. A. S. [2 ]
机构
[1] Univ Muhammadiyah Surakarta, Dept Elect Engn, Surakarta, Indonesia
[2] Curtin Univ Technol, Dept Elect & Comp Engn, Perth, WA, Australia
关键词
Energy loss; Genetic Algorithms; loss reduction; LTC and shunt capacitors; voltage improvement;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimal voltage restoration and loss minimization in distribution system using Genetic Algorithms (GAs) is presented. The optimization is carried out by scheduling Load Tap Changer (LTC) and shunt capacitors to simultaneously improve the voltage and minimize the energy loss. Two GAs are developed to determine the load interval division and the optimal schedule of the controllable devices, respectively. Encoding ability of the proposed method enables checking the fulfillment of switching constraints of any possible schedule prior to performing calculations. This will significantly reduce the computation burden due to unnecessary calculations for infeasible schedules. The optimization is performed for the IEEE 123-bus distribution system. The generated results indicate that the developed methods are effective for the optimal scheduling problem by providing voltage improvement and energy loss minimization.
引用
收藏
页码:704 / +
页数:3
相关论文
共 50 条
  • [1] On the optimal load frequency control of an interconnected hydro electric power system using genetic algorithms
    Karnavas, Yannis L.
    [J]. Proceedings of the Sixth IASTED International Conference on European Power and Energy Systems, 2006, : 138 - 143
  • [2] Efficiency Optimal of Inductive Power Transfer System Using the Genetic Algorithms
    Zhou, Jikun
    Zhang, Rong
    Zhang, Yi
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHANICAL SCIENCE AND ENGINEERING, 2016, 66
  • [3] Optimal allocation of FACTS devices in power system using Genetic Algorithms
    El Metwally, M. M.
    El Emary, A. A.
    El Bendary, F. M.
    Mosaad, M. I.
    [J]. 2008 12TH INTERNATIONAL MIDDLE EAST POWER SYSTEM CONFERENCE, VOLS 1 AND 2, 2008, : 516 - +
  • [4] Optimal SVC Placement in Electric Power Systems Using a Genetic Algorithms Based Method
    Pisica, I.
    Bulac, C.
    Toma, L.
    Eremia, M.
    [J]. 2009 IEEE BUCHAREST POWERTECH, VOLS 1-5, 2009, : 758 - +
  • [5] Reactive Power/Voltage Control for Unbalanced Distribution System Using Genetic Algorithms
    Ulinuha, Agus
    Masoum, Mohammad A. S.
    Islam, Syed M.
    [J]. 2014 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2014,
  • [6] Genetic algorithms to solve the power system restoration planning problem
    Adelmo L. Cechin
    José V. Canto dos Santos
    Carlos A. Mendel
    Arthur T. Gómez
    [J]. Engineering with Computers, 2009, 25 : 261 - 268
  • [7] Genetic algorithms to solve the power system restoration planning problem
    Cechin, Adelmo L.
    Canto dos Santos, Jose V.
    Mendel, Carlos A.
    Gomez, Arthur T.
    [J]. ENGINEERING WITH COMPUTERS, 2009, 25 (03) : 261 - 268
  • [8] Optimal locations and tuning of robust power system stabilizers using genetic algorithms
    Sebaa, Karim
    Boudour, Mohamed
    [J]. IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 334 - +
  • [9] Optimal multiobjective design of robust power system stabilizers using genetic algorithms
    Abdel-Magid, YL
    Abido, MA
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (03) : 1125 - 1132
  • [10] Optimal locations and tuning of robust power system stabilizer using genetic algorithms
    Sebaa, K.
    Boudour, M.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (02) : 406 - 416