A simulation technique for radiating shock tube flows

被引:1
|
作者
Gollan, R. J. [1 ]
Jacobs, C. M. [1 ]
Jacobs, P. A. [1 ]
Morgan, R. G. [1 ]
McIntyre, T. J. [1 ]
Macrossan, M. N. [1 ]
Buttsworth, D. R. [2 ]
Eichmann, T. N. [1 ]
Potter, D. F. [1 ]
机构
[1] Univ Queensland, Ctr Hyperson, Brisbane, Qld 4072, Australia
[2] Univ Southern Queensland, Fac Engn & Survey, Queensland, Australia
关键词
D O I
10.1007/978-3-540-85168-4_74
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe a numerical modelling technique used to simulate the gas flow in the complete X2 facility in non-reflected shock tube mode. The technique uses a one-dimensional model to simulate piston dynamics and diaphragm rupture and couples this to an axisymmetric simulation of the shock tube which captures viscous and finite-rate chemistry effects. This technique is used to simulate a nonequilibrium radiation condition relevant to a Titan atmospheric manoeuvre. The condition is a 7 km/s shock propagating into a N-2/CH4 Mixture at 80 Pa. The results show that the shock remains relatively planar at the exit of the shock tube such that there should be little difficulty for the optics. In terms of modelling, the finite-rate chemistry gas performs better than the equilibrium gas for these flows with regards to flow property estimates.
引用
收藏
页码:465 / +
页数:2
相关论文
共 50 条
  • [41] INFLUENCE OF REFLECTED SHOCK AND BOUNDARY-LAYER INTERACTION ON SHOCK-TUBE FLOWS
    DAVIES, L
    WILSON, JL
    [J]. PHYSICS OF FLUIDS, 1969, 12 (5P2S) : I37 - &
  • [42] Simulation of forming a shock wave in the shock tube tube on the molecular level and behavior of the end of a shock-heated gas
    Kulikov, S. V.
    [J]. SHOCK WAVES, VOL 2, PROCEEDINGS, 2009, : 1503 - 1508
  • [43] Numerical simulation of tube bundle vibrations in cross flows
    Longatte, E
    Bendjeddou, Z
    Souli, M
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON FLUID STRUCTURE INTERACTION, AEROELASTICITY, FLOW INDUCED VIBRATION AND NOISE, PTS A AND B, 2002, : 671 - 679
  • [44] Spontaneously Radiating Shock Waves
    A. G. Kulikovskiy
    A. T. Il’ichev
    A. P. Chugainova
    V. A. Shargatov
    [J]. Doklady Physics, 2019, 64 : 293 - 296
  • [45] SENSITIVITY OF END-ON SHOCK TUBE DETECTION TECHNIQUE
    GUTMAN, D
    MATSUDA, S
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1971, 42 (08): : 1231 - &
  • [46] Spontaneously Radiating Shock Waves
    Kulikovskiy, A. G.
    Il'ichev, A. T.
    Chugainova, A. P.
    Shargatov, V. A.
    [J]. DOKLADY PHYSICS, 2019, 64 (07) : 293 - 296
  • [47] On the numerical technique for the simulation of hypervelocity test flows
    Hu, Z. M.
    Wang, C.
    Jiang, Z. L.
    Khoo, B. C.
    [J]. COMPUTERS & FLUIDS, 2015, 106 : 12 - 18
  • [48] Pseudocompressible approximation and statistical turbulence modeling: Application to shock tube flows
    Soulard, Olivier
    Griffond, Jerome
    Souffland, Denis
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [49] NUMERICAL SIMULATIONS OF TRANSIENT FLOWS IN SHOCK TUBE AND VALIDATIONS WITH EXPERIMENTAL MEASUREMENTS
    Yusoff, M. Z.
    Al-Falahi, A.
    Shuaib, N. H.
    Yusaf, T.
    [J]. MESM '2006: 9TH MIDDLE EASTERN SIMULATION MULTICONFERENCE, 2008, : 5 - 11
  • [50] Planar laser-induced fluorescence imaging in shock tube flows
    Yoo, J.
    Mitchell, D.
    Davidson, D. F.
    Hanson, R. K.
    [J]. EXPERIMENTS IN FLUIDS, 2010, 49 (04) : 751 - 759