Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

被引:6
|
作者
Gonzalez, Jose C. [1 ]
Rodriguez, Miguel A. [2 ]
Figueroa, Ignacio A. [3 ]
Villafuerte-Castrejon, Maria-Elena [3 ]
Diaz, Gerardo C. [1 ]
机构
[1] Univ Autonoma Baja California, Fac Ciencias Quim & Ingn, Calzada Tecnol 14418, Mesa De Otay 22390, Tijuana, Mexico
[2] CSIC, Inst Ceram & Vidrio, C Kelsen 5,Campus Cantoblanco, Madrid 28049, Spain
[3] Univ Nacl Autonoma Mexico, Inst Invest Mat, Ciudad Univ,AP 70-360, Ciudad De Mexico 04510, Mexico
来源
MATERIALS | 2017年 / 10卷 / 03期
关键词
park plasma sintering; composites; mechanical properties; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; ALUMINUM NITRIDE; DENSIFICATION;
D O I
10.3390/ma10030324
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 +/- 1.43 GPa and 27.52 +/- 1.75 GPa for the AlN and TiB2 composites, respectively.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Microstructural development on an annealed ZrO2 (Y2O3) surface
    Tseng, WJ
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1998, 17 (04) : 285 - 288
  • [22] Thermal Shock Resistance of Al2O3/ZrO2(Y2O3) Composites
    Department of Materials Science and Engineering, Shenyang Institute of Chemical Technology, Shenyang, 110142, China
    不详
    不详
    不详
    J Rare Earth, 2007, SUPPL. 1 (53-57):
  • [23] DIRECTIONALLY SOLIDIFIED ZRO2-TA AND ZRO2(Y2O3)-TA COMPOSITES
    CLAUSSEN, N
    ROSER, K
    MATERIALS RESEARCH BULLETIN, 1977, 12 (04) : 393 - 402
  • [24] Features of ZrO2–Y2O3 System Nanopowders with a Different Y2O3 Content
    S. E. Porozova
    I. V. Solnyshkov
    V. B. Kul’met’eva
    V. O. Shokov
    Refractories and Industrial Ceramics, 2015, 56 : 333 - 336
  • [25] Hot pressing sintering process and sintering mechanism of W–La2O3–Y2O3–ZrO2
    Bao-Gang Fu
    Jian-Can Yang
    Zhi-Kun Gao
    Zuo-Ren Nie
    Rare Metals, 2021, 40 : 1949 - 1956
  • [26] Hot pressing sintering process and sintering mechanism of W–La2O3–Y2O3–ZrO2
    Bao-Gang Fu
    Jian-Can Yang
    Zhi-Kun Gao
    Zuo-Ren Nie
    Rare Metals, 2021, 40 (07) : 1949 - 1956
  • [27] Processing and sintering of ultrafine MgO-ZrO2 and (MgO,Y2O3)-ZrO2 powders
    Readey, Michael J.
    Lee, Ran-Rong
    Halloran, John W.
    Heuer, Arthur H.
    1600, (73):
  • [28] PROCESSING AND SINTERING OF ULTRAFINE MGO-ZRO2 AND (MGO,Y2O3)-ZRO2 POWDERS
    READEY, MJ
    LEE, RR
    HALLORAN, JW
    HEUER, AH
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (06) : 1499 - 1503
  • [29] Preliminary study on sintering of Y2O3/ZrO2 composite ceramic foam
    Zhang, A-Ni
    Tang, Xiao-Xia
    Zhang, Hua-Rui
    Luo, De-Ying
    Zhang, Hu
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2012, 41 (01): : 47 - 52
  • [30] Ceramics based on cubic ZrO2 (Y2O3) with addition of a fused Al2O3-ZrO2 (Y2O3) eutectic
    Ordan'yan, SS
    Gudovskikh, PS
    Pigunova, AN
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2004, 45 (01) : 1 - 2