Densities of distributions of homogeneous functions of Gaussian random vectors

被引:1
|
作者
Bogachev, V., I [1 ,2 ,3 ]
Kosov, E. D. [1 ,2 ]
Popova, S. N. [2 ,4 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119991, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow 101000, Russia
[3] St Tikhons Orthodox Univ, Moscow 115184, Russia
[4] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Oblast, Russia
基金
俄罗斯科学基金会;
关键词
Gaussian measure; homogeneous function; distribution density; ASYMPTOTIC-DISTRIBUTION; EXPANSION;
D O I
10.1134/S106456242006023X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain broad sufficient conditions for the boundedness of distribution densities of homogeneous functions on spaces with Gaussian measures. Estimates for the distribution densities of maxima of quadratic forms are obtained.
引用
收藏
页码:460 / 463
页数:4
相关论文
共 50 条
  • [21] Simulation of Random Vectors with Isotropic Fractional Stable Distributions and Calculation of Their Probability Density Functions
    V. V. Uchaikin
    V. V. Saenko
    Journal of Mathematical Sciences, 2002, 112 (2) : 4211 - 4228
  • [22] Nodal densities of planar gaussian random waves
    Dennis, M. R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 145 : 191 - 210
  • [23] Nodal densities of planar gaussian random waves
    M. R. Dennis
    The European Physical Journal Special Topics, 2007, 145 : 191 - 210
  • [25] Gaussian approximation of conditional elliptical random vectors
    Hashorva, Enkelejd
    STOCHASTIC MODELS, 2006, 22 (03) : 441 - 457
  • [26] LOW RANK DETECTORS FOR GAUSSIAN RANDOM VECTORS
    SCHARF, LL
    VANVEEN, BD
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (11): : 1579 - 1582
  • [27] On Entropy Approximation for Gaussian Mixture Random Vectors
    Huber, Marco F.
    Bailey, Tim
    Durrant-Whyte, Hugh
    Hanebeck, Uwe D.
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 336 - +
  • [28] Strong Gaussian Approximation for the Sum of Random Vectors
    Buzun, Nazar
    Shvetsov, Nikolay
    Dylov, Dmitry V.
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178
  • [29] Limits for Partial Maxima of Gaussian Random Vectors
    James Kuelbs
    Joel Zinn
    Journal of Theoretical Probability, 2020, 33 : 788 - 827
  • [30] Limits for Partial Maxima of Gaussian Random Vectors
    Kuelbs, James
    Zinn, Joel
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (02) : 788 - 827