Convergence of semi-discrete approximations of Benney equations

被引:3
|
作者
Amorim, Paulo [1 ]
Figueira, Mario [1 ]
机构
[1] Univ Lisbon, Ctr Matemat & Aplicacoes Fundamentais, P-1649003 Lisbon, Portugal
关键词
WAVES;
D O I
10.1016/j.crma.2009.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this Note we study the numerical approximation of Benney equations in the long wave-short wave resonance case. We prove the convergence of a finite-difference semi-discrete scheme in the energy space. In the second part of the Note we consider the semi-discretization of a quasilinear version of Benney equations. We prove the convergence of a finite-difference semi-discrete Lax-Friedrichs type scheme towards a weak entropy solution of the Cauchy problem. To cite this article: P Amorim, M. Figueira, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1135 / 1140
页数:6
相关论文
共 50 条