Pitch Estimation Using Non-negative Matrix Factorization

被引:0
|
作者
Burt, Ryan [1 ]
Cinar, Goktug T. [1 ]
Principe, Jose C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Computat NeuroEngn Lab, Gainesville, FL 32601 USA
关键词
Correntropy; non-negative matrix factorization; pitch detection; spectral representation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of pitch detection consists of estimating the dominant frequency present in a certain time window. This paper demonstrates and analyzes the use of a non-negative matrix factorization technique with a frequency basis formed with a correntropy kernel. This offers the advantage that the frequency basis is adaptable, allowing the matrix factorization to fit the data precisely, as well as including a dictionary specifically to account for noise. Using non-negative matrix factorization also allows an increase in dimensionality, which increases the frequency resolution of the algorithm. The method is tested on a database of trumpet notes and compared to other current methods, improving on their performance for noisy signals.
引用
收藏
页码:2058 / 2062
页数:5
相关论文
共 50 条
  • [1] A PRIORI SNR ESTIMATION USING DISCRIMINATIVE NON-NEGATIVE MATRIX FACTORIZATION
    Xu, Ziyi
    Elshamy, Samy
    Fingscheidt, Tim
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 661 - 665
  • [2] Age Estimation Based on Extended Non-negative Matrix Factorization
    Zhan, Ce
    Li, Wanqing
    Ogunbona, Philip
    2011 IEEE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2011,
  • [3] Human Detection Using Non-negative Matrix Factorization
    Zeng, Jing-Xiu
    Lin, Chih-Yang
    Lin, Wei-Yang
    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2015, : 370 - 371
  • [4] Email surveillance using non-negative matrix factorization
    Berry M.W.
    Browne M.
    Computational & Mathematical Organization Theory, 2005, 11 (3): : 249 - 264
  • [5] Tumor Classification Using Non-negative Matrix Factorization
    Zhang, Ping
    Zheng, Chun-Hou
    Li, Bo
    Wen, Chang-Gang
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2008, 15 : 236 - +
  • [6] Dropout non-negative matrix factorization
    Zhicheng He
    Jie Liu
    Caihua Liu
    Yuan Wang
    Airu Yin
    Yalou Huang
    Knowledge and Information Systems, 2019, 60 : 781 - 806
  • [7] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [8] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [9] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [10] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187