A multiple surrogate assisted multi/many-objective multi-fidelity evolutionary algorithm

被引:13
|
作者
Habib, Ahsanul [1 ]
Singh, Hemant K. [1 ]
Ray, Tapabrata [1 ]
机构
[1] UNSW, SEIT, Canberra, ACT, Australia
关键词
Multi-fidelity; Multi-objective; Metamodels; Reference directions; Decomposition; OPTIMIZATION; DESIGN; APPROXIMATION; SIMULATIONS; PERFORMANCE;
D O I
10.1016/j.ins.2019.06.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Engineering design commonly involves optimization of multiple conflicting performance objectives. During the optimization process, the performance of each candidate design/solution is evaluated using a model which may be empirical, numerical, experimental, etc., among other forms. The accuracy of the underlying model in representing the real-world behavior is referred to as fidelity. A low-fidelity model may be quick to evaluate but not very accurate; whereas a high-fidelity model may be computationally expensive to evaluate but provides an accurate estimate of the true performance. The paradigm of utilizing the low and high-fidelity models' information to identify the high-fidelity optimal solution(s) is known as multi fidelity optimization. This study delves into multi-fidelity optimization for problems which contain multiple objectives and where iterative solvers such as finite element analysis, computational fluid dynamics, etc. are used for performance evaluation. By stopping the solver at various stages before convergence, lower-fidelity performance estimates can be obtained at reduced computational cost. Most of the existing multi-fidelity methods can only deal with two fidelities (high and low) and a single objective. To overcome this research gap, we present a novel multi-objective evolutionary algorithm that can deal with multiple (arbitrary) number of fidelities by effectively utilizing pre-converged low-fidelity information. The proposed algorithm uses multiple surrogate models to capture the underlying function(s) with enhanced precision. A decomposition-based scheme is deployed for improved scalability in higher number of objectives. A classifier assisted pre-selection method is used to screen potential non-dominated solutions for efficient use of the computational budget. Additionally, a set of multi-fidelity, multi/many objective benchmark problems with different Pareto front types is also introduced to aid a systematic benchmarking. Numerical experiments are presented to highlight the efficacy of the proposed approach. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:537 / 557
页数:21
相关论文
共 50 条
  • [1] Novel multi-fidelity surrogate model assisted many-objective optimization method
    Zhao H.
    Gao Z.
    Xia L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (06):
  • [2] A Multiple Surrogate Assisted Decomposition-Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization
    Habib, Ahsanul
    Singh, Hemant Kumar
    Chugh, Tinkle
    Ray, Tapabrata
    Miettinen, Kaisa
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 1000 - 1014
  • [3] Neighborhood samples and surrogate assisted multi-objective evolutionary algorithm for expensive many-objective optimization problems
    Zhao, Yi
    Zeng, Jianchao
    Tan, Ying
    APPLIED SOFT COMPUTING, 2021, 105
  • [4] A dual surrogate assisted evolutionary algorithm based on parallel search for expensive multi/many-objective optimization
    Shen, Jiangtao
    Wang, Peng
    Tian, Ye
    Dong, Huachao
    APPLIED SOFT COMPUTING, 2023, 148
  • [5] A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
    Liu, Bo
    Koziel, Slawomir
    Zhang, Qingfu
    JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 12 : 28 - 37
  • [6] A Surrogate-Assisted Many-Objective Evolutionary Algorithm Using Multi- Classification and Coevolution for Expensive Optimization Problems
    Wang, Ruoyu
    Zhou, Yuee
    Chen, Hanning
    Ma, Lianbo
    Zheng, Meng
    IEEE ACCESS, 2021, 9 : 159160 - 159174
  • [7] A composite surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Zhai, Zhaomin
    Tan, Yanyan
    Li, Xiaojie
    Li, Junqing
    Zhang, Huaxiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [8] Ensemble surrogate assisted evolutionary algorithm for complex system many-objective optimization
    You X.
    Niu Z.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (04): : 1201 - 1212
  • [9] Hybrid selection based multi/many-objective evolutionary algorithm
    Dutta, Saykat
    Mallipeddi, Rammohan
    Das, Kedar Nath
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Hybrid selection based multi/many-objective evolutionary algorithm
    Saykat Dutta
    Rammohan Mallipeddi
    Kedar Nath Das
    Scientific Reports, 12