EPMC estimation in discriminant analysis when the dimension and sample sizes are large

被引:3
|
作者
Tonda, Tetsuji [1 ]
Nakagawa, Tomoyuki [2 ]
Wakaki, Hirofumi [2 ]
机构
[1] Prefectural Univ Hiroshima, Fac Management & Informat Syst, Hiroshima 7348558, Japan
[2] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398526, Japan
关键词
Discriminant analysis; Classification; High dimensional; Asymptotic expansion; Expected probability of misclassification;
D O I
10.32917/hmj/1492048847
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain a higher order asymptotic unbiased estimator for the expected probability of misclassification (EPMC) of the linear discriminant function when both the dimension and the sample size are large. Moreover, we evaluate the mean squared error of our estimator. We also present a numerical comparison between the performance of our estimator and that of the other estimators based on Okamoto (1963, 1968) and Fujikoshi and Seo (1998). It is shown that the bias and the mean squared error of our estimator are less than those of the other estimators.
引用
下载
收藏
页码:43 / 62
页数:20
相关论文
共 50 条
  • [21] Discriminant analysis of mandibular measurements for the estimation of sex in a modern Brazilian sample
    Thais Torralbo Lopez-Capp
    Christopher Rynn
    Caroline Wilkinson
    Luiz Airton Saavedra de Paiva
    Edgard Michel-Crosato
    Maria Gabriela Haye Biazevic
    International Journal of Legal Medicine, 2018, 132 : 843 - 851
  • [22] Discriminant analysis of mandibular measurements for the estimation of sex in a modern Brazilian sample
    Lopez-Capp, Thais Torralbo
    Rynn, Christopher
    Wilkinson, Caroline
    Saavedra de Paiva, Luiz Airton
    Michel-Crosato, Edgard
    Haye Biazevic, Maria Gabriela
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2018, 132 (03) : 843 - 851
  • [23] PREMIUM AND PROTECTION OF SEVERAL PROCEDURES FOR DEALING WITH OUTLIERS WHEN SAMPLE SIZES ARE MODERATE TO LARGE
    GUTTMAN, I
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2191 - &
  • [24] PREMIUM AND PROTECTION OF SEVERAL PROCEDURES FOR DEALING WITH OUTLIERS WHEN SAMPLE SIZES ARE MODERATE TO LARGE
    GUTTMAN, I
    TECHNOMETRICS, 1973, 15 (02) : 385 - 404
  • [25] Improving implementation of linear discriminant analysis for the high dimension/small sample size problem
    Tebbens, Jurjen Duintjer
    Schlesinger, Pavel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 423 - 437
  • [26] Sample sizes for estimation in clinical research
    Julious, SA
    Patterson, SD
    PHARMACEUTICAL STATISTICS, 2004, 3 (03) : 213 - 215
  • [27] Large-sample properties of unsupervised estimation of the linear discriminant using projection pursuit
    Radojicic, Una
    Nordhausen, Klaus
    Virta, Joni
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 6677 - 6739
  • [28] Pooled shrinkage estimator for quadratic discriminant classifier: an analysis for small sample sizes in face recognition
    Ali, Syed Shahnewaz
    Howlader, Tamanna
    Rahman, S. M. Mahbubur
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (03) : 507 - 522
  • [29] Pooled shrinkage estimator for quadratic discriminant classifier: an analysis for small sample sizes in face recognition
    Syed Shahnewaz Ali
    Tamanna Howlader
    S. M. Mahbubur Rahman
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 507 - 522
  • [30] LARGE SAMPLE CHANGE-POINT ESTIMATION WHEN DISTRIBUTIONS ARE UNKNOWN
    Borovkov, A. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (03) : 402 - 418