A realization theorem for sets of distances

被引:13
|
作者
Geroldinger, Alfred [1 ]
Schmid, Wolfgang A. [2 ,3 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, NAWI Graz, Heinrichstr 36, A-8010 Graz, Austria
[2] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS,UMR 7539,Univ Paris 8, F-93430 Villetaneuse, France
[3] Univ Paris 08, CNRS, Univ Paris Lumieres, COMUE,LAGA,UMR 7539, F-93526 St Denis, France
基金
奥地利科学基金会;
关键词
Krull monoids; Sets of lengths; Sets of distances; SEMILOCAL ENDOMORPHISM-RINGS; DIRECT-SUM DECOMPOSITIONS; KRULL MONOIDS; MODULES;
D O I
10.1016/j.jalgebra.2017.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be an atomic monoid. The set of distances Delta(H) of H is the set of all d is an element of N with the following property: there are irreducible elements u(1),..., u(k), v(1) ..., Vk+d such that u(1)....u(k) = v(1) .... v(k+d) but u(1)... u(k) cannot be written as a product of l irreducible elements for any l is an element of N with k < l < k + d. It is well-known (and easy to show) that, if Delta(H) is nonempty, then mm Delta(H) = gcd Delta(H). In this paper we show conversely that for every finite nonempty set Delta subset of N with min Delta = gcd Delta there is a finitely generated Krull monoid H such that Delta(H) = Delta. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
  • [31] A HELLY THEOREM FOR SETS
    PECK, GW
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (03): : 306 - 308
  • [32] A THEOREM ON POWER SETS
    WOLK, ES
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 397 - &
  • [33] THEOREM ON FINITE SETS
    HILTON, AJW
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105): : 33 - 36
  • [34] A THEOREM ON HYPERSIMPLE SETS
    DEKKER, JCE
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (01) : 72 - 72
  • [35] On adaptive confidence sets for the Wasserstein distances
    Deo, Neil
    Randrianarisoa, Thibault
    [J]. BERNOULLI, 2023, 29 (03) : 2119 - 2141
  • [36] A NOTE ON AVERAGE DISTANCES IN DIGITAL SETS
    ROSENFELD, A
    [J]. PATTERN RECOGNITION LETTERS, 1987, 5 (04) : 281 - 283
  • [37] A REMARK ON SETS WITH FEW DISTANCES IN Rd
    Petrov, Fedor
    Pohoata, Cosmin
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 569 - 571
  • [38] ON THE DISTRIBUTION OF DISTANCES IN FINITE SETS IN THE PLANE
    VESZTERGOMBI, K
    [J]. DISCRETE MATHEMATICS, 1985, 57 (1-2) : 129 - 145
  • [39] ON SETS OF DISTANCES OF N-POINTS
    ERDOS, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (07): : 738 - +
  • [40] Center of Distances and Central Cantor Sets
    Banakiewicz, Michal
    Bartoszewicz, Artur
    Filipczak, Malgorzata
    Prus-Wisniowski, Franciszek
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (05)