Post-translational modification is essential for catalytic activity of nitrile hydratase

被引:137
|
作者
Murakami, T
Nojiri, M
Nakayama, H
Odaka, M
Yohda, M
Dohmae, N
Takio, K
Nagamune, T
Endo, I
机构
[1] RIKEN, Inst Phys & Chem Res, Biochem Syst Lab, Wako, Saitama 3510198, Japan
[2] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Bunkyo Ku, Tokyo 1138656, Japan
[3] Tokyo Univ Agr & Technol, Fac Technol, Dept Biotechnol & Life Sci, Koganei, Tokyo 1848588, Japan
关键词
cysteine-sulfenic acid; cysteine-sulfinic acid; nitrile hydration; nonheme iron; oxidation; post-translational modification;
D O I
10.1110/ps.9.5.1024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitrile hydratase from Rhodococcus sp. N-771 is an alpha beta heterodimer with a nonheme ferric iron in the catalytic center. In the catalytic center, alpha Cys112 and alpha Cys114 are modified to a cysteine sulfinic acid (Cys-SO2H) and a cysteine sulfenic acid (Cys-SOH), respectively. To understand the function and the biogenic mechanism of these modified residues, we reconstituted the nitrile hydratase from recombinant unmodified subunits. The alpha beta complex reconstituted under argon exhibited no activity. However, it gradually gained the enzymatic activity through aerobic incubation. ESI-LC/MS analysis showed that the anaerobically reconstituted alpha beta complex did not have the modification of alpha Cys112-SO2H and aerobic incubation induced the modification. The activity of the reconstituted alpha beta complex correlated with the amount of alpha Cys112-SO2H. Furthermore, ESI-LC/MS analyses of the tryptic digest of the reconstituted complex. removed of ferric iron at low pH and carboxamidomethylated without reduction, suggested that alpha Cys114 is modified to Cys-SOH together with the sulfinic acid modification of alpha Cys112. These results suggest that alpha Cys112 and alpha Cys114 are spontaneously oxidized to Cys-SO2H and Cys-SOH, respectively, and alpha Cys112-SO2H is responsible for the catalytic activity solely or in combination with alpha Cys114-SOH.
引用
收藏
页码:1024 / 1030
页数:7
相关论文
共 50 条
  • [31] Post-translational modification and regulation of actin
    Terman, Jonathan R.
    Kashina, Anna
    CURRENT OPINION IN CELL BIOLOGY, 2013, 25 (01) : 30 - 38
  • [32] Progresses in Predicting Post-translational Modification
    Chou, Kuo-Chen
    INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2020, 26 (02) : 873 - 888
  • [33] Synthetic post-translational modification of histones
    Nadal, Simon
    Raj, Ritu
    Mohammed, Shabaz
    Davis, Benjamin G.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2018, 45 : 35 - 47
  • [34] POST-TRANSLATIONAL MODIFICATION OF PROTEINS BY PHOSPHORYLATION
    TREWAVAS, A
    ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1976, 27 : 349 - 374
  • [35] Post-translational modification of transthyretin in plasma
    Terazaki, H
    Ando, Y
    Suhr, O
    Ohlsson, PI
    Obayashi, K
    Yamashita, T
    Yoshimatsu, S
    Suga, M
    Uchino, M
    Ando, M
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (01) : 26 - 30
  • [37] Progresses in Predicting Post-translational Modification
    Kuo-Chen Chou
    International Journal of Peptide Research and Therapeutics, 2020, 26 : 873 - 888
  • [38] Post-translational modification of RAS proteins
    Campbell, Sharon L.
    Philips, Mark R.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 71 : 180 - 192
  • [39] Post-translational modification of the androgen receptor
    Gioeli, Daniel
    Paschal, Bryce M.
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2012, 352 (1-2) : 70 - 78
  • [40] AMPylation is a new post-translational modiFICation
    Yarbrough, Melanie L.
    Orth, Kim
    NATURE CHEMICAL BIOLOGY, 2009, 5 (06) : 378 - 379