Determination of the bonding strength in solid oxide fuel cells' interfaces by Schwickerath crack initiation test

被引:18
|
作者
Boccaccini, D. N. [1 ]
Sevecek, O. [2 ]
Frandsen, H. L. [1 ]
Dlouhy, I. [3 ]
Molin, S. [1 ]
Charlas, B. [1 ]
Hjelm, J. [1 ]
Cannio, M. [4 ]
Hendriksen, P. V. [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[2] Brno Univ Technol, Inst Solid Mech Mechatron & Biomech, Tech 2, Brno 61669, Czech Republic
[3] Acad Sci Czech Republ, Inst Phys Mat, Zizkova 22, Brno 61662, Czech Republic
[4] Univ Modena & Reggio Emilia, Dipartimento Ingn Enzo Ferrari, Via Vivarelli 10, I-41125 Modena, Italy
关键词
Schwickerath crack-initiation test; Three-point bending test; SOFC interfaces; Metal-ceramic bond strength; THERMAL-EXPANSION; PERFORMANCE;
D O I
10.1016/j.jeurceramsoc.2017.04.018
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An adaptation of the Schwickerath crack initiation test (ISO 9693) was used to determine the bonding strength between an anode support and three different cathodes with a solid oxide fuel cell interconnect. Interfacial elemental characterization of the interfaces was carried out by SEM/EDS analysis on fracture surfaces to investigate the bonding mechanisms. SEM/EDS of fresh fractures were also performed to determine the cohesion/adhesion mechanism of bonding. Calculations of the residual stresses were determined by finite element simulation using ANSYS, based on thermo-mechanical properties of the materials obtained by measurement, calculation or literature. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3565 / 3578
页数:14
相关论文
共 50 条
  • [41] Ammonia as a fuel in solid oxide fuel cells
    Wojcik, A
    Middleton, H
    Damopoulos, I
    Van herle, J
    JOURNAL OF POWER SOURCES, 2003, 118 (1-2) : 342 - 348
  • [42] Room and elevated temperature shear strength of sealants for solid oxide fuel cells
    Osipova, T.
    Wei, J.
    Pecanac, G.
    Malzbender, J.
    CERAMICS INTERNATIONAL, 2016, 42 (11) : 12932 - 12936
  • [43] Crack propagation of planar and corrugated solid oxide fuel cells during cooling process
    Xie, Jiamiao
    Hao, Wenqian
    Wang, Fenghui
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (07) : 3020 - 3027
  • [44] Use of instrumented Charpy test for determination of crack initiation toughness
    Viehrig, HW
    Boehmert, J
    Richter, H
    Valo, M
    PENDULUM IMPACT TESTING: A CENTURY OF PROGRESS, 2000, (1380): : 354 - 365
  • [45] Adhesion determination of dental porcelain to zirconia using the Schwickerath test: Strength vs. fracture energy approach
    Kosyfaki, P.
    Swain, M. V.
    ACTA BIOMATERIALIA, 2014, 10 (11) : 4861 - 4869
  • [46] Enhanced charge transfer with Ag grids at electrolyte/electrode interfaces in solid oxide fuel cells
    Choi, Mingi
    Hwang, Sangyeon
    Byun, Doyoung
    Lee, Wonyoung
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (12) : 4420 - 4424
  • [47] Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids
    Choi, Mingi
    Hwang, Sangyeon
    Byun, Doyoung
    Lee, Wonyoung
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2015, 52 (05) : 356 - 360
  • [48] Electrolytes for solid oxide fuel cells
    Fergus, Jeffrey W.
    JOURNAL OF POWER SOURCES, 2006, 162 (01) : 30 - 40
  • [49] Classification of Solid Oxide Fuel Cells
    Kuterbekov, Kairat A.
    Nikonov, Alexey, V
    Bekmyrza, Kenzhebatyr Zh
    Pavzderin, Nikita B.
    Kabyshev, Asset M.
    Kubenova, Marzhan M.
    Kabdrakhimova, Gaukhar D.
    Aidarbekov, Nursultan
    NANOMATERIALS, 2022, 12 (07)
  • [50] Ceramics in solid oxide fuel cells
    Huijsmans, JPP
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2001, 5 (04): : 317 - 323