Cooperation of coordinated teams of Autonomous Underwater Vehicles

被引:10
|
作者
Djapic, Vladimir [1 ]
Dong, Wenjie [2 ]
Spaccini, Daniele [3 ,4 ]
Cario, Gianni [5 ,6 ]
Casavola, Alessandro [5 ,6 ]
Gjanci, Petrika [3 ,4 ]
Lnpia, Marco [5 ,6 ]
Petrioli, Chiara [3 ,4 ]
机构
[1] SPAWAR Syst Ctr Pacific, San Diego, CA 92152 USA
[2] Univ Texas Rio Grande Valley, Dept Elect Engn, Edinburg, TX 78539 USA
[3] Univ Roma La Sapienza, Comp Sci Dept, Rome, Italy
[4] WSENSE Srl, Rome, Italy
[5] Univ Calabria, Dept Informat Modelling Elect & Syst, Arcavacata Di Rende, Italy
[6] Applicon Srl, Arcavacata Di Rende, Italy
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 15期
关键词
Spiral beacon; atomic clock; acoustic modern; cooperative localization; underwater networking;
D O I
10.1016/j.ifacol.2016.07.714
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tins paper presents the initial stage of the development of an underwater localization system suitable for a flexible number of users. Multiple Autonomous Underwater Vehicles(AU)' can work as a team and cooperate with other teams of AVs without, costly and acoustically active components, which Saves energy and allows AUVs to remain silent,. The main building blocks for such a system are: spiral wavefront beacon in conjunction with a standard (circular) acoustic modem, Chip Scale Atomic Clocks (CSAC), acoustic modems, state-of-the-art adaptive underwater networking and Cooperative Localization (CL) algorithms. Using the difference in time of arrival between the spiral wavefront and the modem circular wavefront, receivers will be able to determine the bearing to the source using only one hydrophone. Synchronizing vehicles Chip Scale Atomic Clocks (CSAC) with the beacon at the beginning; of the mission and during the longer missions will ensure the vehicles ability to also calculate their distance from the beacon upon every message reception. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 93
页数:6
相关论文
共 50 条
  • [41] Asynchronous Teams: Cooperation Schemes for Autonomous Agents
    Sarosh Talukdar
    Lars Baerentzen
    Andrew Gove
    Pedro De Souza
    Journal of Heuristics, 1998, 4 : 295 - 321
  • [42] THRUSTER INTERACTIONS ON AUTONOMOUS UNDERWATER VEHICLES
    Palmer, Alistair R.
    Hearn, Grant E.
    Stevenson, Peter
    OMAE 2009, VOL 4, PTS A AND B, 2009, : 503 - 511
  • [43] Tracking multiple Autonomous Underwater Vehicles
    José Melo
    Aníbal C. Matos
    Autonomous Robots, 2019, 43 : 1 - 20
  • [44] The legal status of autonomous underwater vehicles
    Showalter, S
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2004, 38 (01) : 80 - 83
  • [45] Power sources for autonomous underwater vehicles
    Hasvold, Oistein
    Storkersen, Nils J.
    Forseth, Sissel
    Lian, Torleif
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 935 - 942
  • [46] Tracking multiple Autonomous Underwater Vehicles
    Melo, Jose
    Matos, Anibal C.
    AUTONOMOUS ROBOTS, 2019, 43 (01) : 1 - 20
  • [47] Power systems for autonomous underwater vehicles
    Bradley, AM
    Feezor, MD
    Singh, H
    Sorrell, FY
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2001, 26 (04) : 526 - 538
  • [48] Development of autonomous underwater vehicles in Japan
    Ura, T
    ADVANCED ROBOTICS, 2002, 16 (01) : 3 - 15
  • [49] Autonomous underwater vehicles: Instrumentation and measurements
    Bernelte Sanchez, Pedro Jose
    Papaelias, Mayorkinos
    Garcia Marquez, Fausto Pedro
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2020, 23 (02) : 105 - 114
  • [50] Asynchronous teams: Cooperation schemes for autonomous agents
    Talukdar, S
    Baerentzen, L
    Gove, A
    De Souza, P
    JOURNAL OF HEURISTICS, 1998, 4 (04) : 295 - 321