SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor

被引:242
|
作者
Wilson, RW [1 ]
机构
[1] Univ Durham, Dept Phys, Astron Instrumentat Grp, Durham DH1 3LE, England
关键词
atmospheric effects; instrumentation : adaptive optics; site testing; telescopes;
D O I
10.1046/j.1365-8711.2002.05847.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper discusses the use of Shack-Hartmann wavefront sensors to determine the vertical distribution of atmospheric optical turbulence above large telescopes. It is demonstrated that the turbulence altitude profile can be recovered reliably from time-averaged spatial cross-correlations of the local wavefront slopes for Shack-Hartmann observations of binary stars. The method, which is referred to as SLODAR, is analogous to the well known SCIDAR scintillation profiling technique, and a calibration against contemporaneous SCIDAR observations is shown. Hardware requirements are simplified relative to the scintillation method, and the number of suitable target objects is larger. The implementation of a Shack-Hartmann based turbulence monitor for use at the William Herschel Telescope is described. The system will be used to optimize adaptive optical observations at the telescope and to characterize anisoplanatic variations of the corrected point spread function.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [31] Detecting error of Shack-Hartmann wavefront sensor
    Jiang, WH
    Xian, H
    Shen, F
    ADAPTIVE OPTICS AND APPLICATIONS, 1997, 3126 : 534 - 544
  • [32] CUMULATIVE WAVEFRONT RECONSTRUCTOR FOR THE SHACK-HARTMANN SENSOR
    Zhariy, Mariya
    Neubauer, Andreas
    Rosensteiner, Matthias
    Ramlau, Ronny
    INVERSE PROBLEMS AND IMAGING, 2011, 5 (04) : 893 - 913
  • [33] Wavefront reconstruction with the adaptive Shack-Hartmann sensor
    Seifert, L
    Tiziani, HJ
    Osten, W
    OPTICS COMMUNICATIONS, 2005, 245 (1-6) : 255 - 269
  • [34] Numerical simulation of Shack-Hartmann wavefront sensor to characterize the turbulence phase statistics
    Jiang, ZL
    Dai, Y
    Li, FQ
    Cheng, XW
    Gong, SS
    OPTICS AND LASERS IN ENGINEERING, 2006, 44 (05) : 466 - 478
  • [35] Measuring Light Scatter With a Shack-Hartmann Wavefront Aberrometer
    Nam, J.
    Himebaugh, N. L.
    Liu, H.
    Thibos, L. N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [36] Estimation of atmospheric turbulence parameters from Shack-Hartmann wavefront sensor measurements
    Andrade, Paulo P.
    Garcia, Paulo J. V.
    Correia, Carlos M.
    Kolb, Johann
    Carvalho, Maria Ines
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (01) : 1192 - 1201
  • [37] Wavefront measuring algorithm with improved measurement resolution using a Shack-Hartmann sensor
    Park, SK
    Baik, SH
    Seo, YS
    Kim, CJ
    Ra, SW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 (06) : 743 - 750
  • [38] Measurement error of wavefront phase with Shack-Hartmann wavefront sensor
    Shen, Feng
    Jiang, Wenhan
    Guangxue Xuebao/Acta Optica Sinica, 2000, 20 (05): : 666 - 671
  • [39] Measuring statistical error of Shack-Hartmann wavefront sensor with discrete detector arrays
    Li, Chaohong
    Xian, Hao
    Rao, Changhui
    Jiang, Wenhan
    JOURNAL OF MODERN OPTICS, 2008, 55 (14) : 2243 - 2255
  • [40] Optimization for high precision Shack-Hartmann wavefront sensor
    Li, Chao
    Xia, Mingliang
    Liu, Zhaonan
    Li, Dayu
    Xuan, Li
    OPTICS COMMUNICATIONS, 2009, 282 (22) : 4333 - 4338