(P, Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class

被引:12
|
作者
Akgul, Arzu [1 ]
机构
[1] Kocaeli Univ, Fac Arts & Sci, Dept Math, Kocaeli, Turkey
关键词
(P; Q)-Lucas polynomials; coefficient bounds; bi-univalent functions;
D O I
10.3906/mat-1903-38
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Lucas polynomials and other special polynomials gained importance in the field of geometric function theory. In this study, by connecting these polynomials, subordination, and the Al-Oboudi differential operator, we introduce a new class of bi-univalent functions and obtain coefficient estimates and Fekete-Szego inequalities for this new class.
引用
收藏
页码:2170 / 2176
页数:7
相关论文
共 50 条
  • [21] On coefficient inequalities for certain subclasses of meromorphic bi-univalent functions
    Patil, Amol B.
    Naik, Uday H.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (43): : 197 - 205
  • [22] On coefficient inequalities for certain subclasses of meromorphic bi-univalent functions
    Patil, Amol B.
    Naik, Uday H.
    Italian Journal of Pure and Applied Mathematics, 2020, 43 : 197 - 205
  • [23] Coefficient inequalities for new subclasses of bi-univalent functions defined by using the function fδ
    Sagsoz, Fatma
    Orhan, Halit
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [24] INITIAL BOUNDS FOR CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY THE (p, q)-LUCAS POLYNOMIALS
    Magesh, N.
    Abirami, C.
    Altinkaya, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (01): : 282 - 288
  • [25] Coefficient Bounds for Certain Subclasses of Bi-Univalent Function
    Murugusundaramoorthy, G.
    Magesh, N.
    Prameela, V.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [26] Certain Inequalities for a General Class of Analytic and Bi-univalent Functions
    Akgul, Arzu
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 14 (01): : 1 - 13
  • [27] Initial Coefficient Bounds for a General Class of Bi-Univalent Functions
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    FILOMAT, 2015, 29 (06) : 1259 - 1267
  • [28] FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR BI-UNIVALENT FUNCTIONS DEFINED BY SUBORDINATIONS
    Hamidi, S. G.
    Jahangiri, J. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (05): : 1103 - 1119
  • [29] Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions
    Srivastava, H. M.
    Eker, Sevtap Sumer
    Ali, Rosihan M.
    FILOMAT, 2015, 29 (08) : 1839 - 1845
  • [30] Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions
    Alsoboh, Abdullah
    Amourah, Ala
    Sakar, Fethiye Muge
    Ogilat, Osama
    Gharib, Gharib Mousa
    Zomot, Nasser
    AXIOMS, 2023, 12 (06)