Composite-particle emission in the reaction p plus Au at 2.5 GeV

被引:35
|
作者
Letourneau, A
Böhm, A
Galin, J
Lott, B
Péghaire, A
Enke, M
Herbach, CM
Hilscher, D
Jahnke, U
Tishchenko, V
Filges, D
Goldenbaum, F
Neef, RD
Nünighoff, K
Paul, N
Sterzenbach, G
Pienkowski, L
Toke, J
Schröder, U
机构
[1] CEA, DSM, CNRS, IN2P3,GANIL, F-14076 Caen 05, France
[2] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
[3] Forschungszentrum Julich GmbH, Inst Kernphys, D-52425 Julich, Germany
[4] Warsaw Univ, Heavy Ion Lab, PL-02093 Warsaw, Poland
[5] Univ Rochester, Rochester, NY 14627 USA
关键词
Au-197(p; X); E=2.5; GeV; measured light charged particle spectra; neutron and light charged particle multiplicities; yields; deduced excitation energy distribution; pX); (p; dX); tX); (HeX)-He-3); alpha X); (LiX)-Li-6); (LiX)-Li-7); measured sigma(E; theta); sigma; spallation reaction; comparison with coalescence model predictions;
D O I
10.1016/S0375-9474(02)01133-8
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The emission of composite-particles is studied in the reaction p + Au at E-p = 2.5 GeV, in addition to neutrons and protons. Most particle energy spectra feature an evaporation spectrum superimposed on an exponential high-energy, non-statistical component. Comparisons are first made with the predictions by a two-stage hybrid reaction model, where an intra-maclear cascade (INC) simulation is followed by a statistical evaporation process. The high-energy proton component is identified as product of the fast pre-equilibrium INC, since it is rather well reproduced by the INCL2.0 intranuclear cascade calculations simulating the first reaction stage. The low-energy spectral components are well understood in terms of sequential particle evaporation from the hot nuclear target remnants of the fast INC. Evaporation is modeled using the statistical code GEMINI. Implementation of a simple coalescence model in the INC code can provide a reasonable description of the multiplicities of high-energy composite particles such as H2-3 and He-3. However, this is done at the expense of H which then fails to reproduce the experimental energy spectra. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:133 / 166
页数:34
相关论文
共 50 条
  • [21] Charged particle densities from Au plus Au collisions at √SNN=130 GeV
    Bearden, IG
    Beavis, D
    Besliu, C
    Blyakhman, Y
    Brzychezyk, J
    Budick, B
    Boggild, H
    Chasman, C
    Christensen, CH
    Christiansen, P
    Cibor, J
    Debbe, R
    Gaardhoje, JJ
    Grotowski, K
    Hagel, K
    Hansen, O
    Holm, A
    Holme, AK
    Ito, H
    Jakobsen, E
    Jipa, A
    Jordre, JI
    Jundt, F
    Jorgensen, CE
    Keutgen, T
    Kim, EJ
    Kozik, T
    Larsen, TM
    Lee, JH
    Lee, YK
    Lovhoiden, G
    Majka, Z
    Makeev, A
    McBreen, E
    Murray, M
    Natowitz, J
    Nielsen, BS
    Olchanski, K
    Olness, J
    Ouerdane, D
    Planeta, R
    Rami, F
    Röhrich, D
    Samset, BH
    Sanders, SJ
    Sheetz, RA
    Sosin, Z
    Staszel, P
    Thorsteinsen, TF
    Tveter, TS
    PHYSICS LETTERS B, 2001, 523 (3-4) : 227 - 233
  • [22] Particle distribution and nuclear stopping in Au plus Au collisions at √SNN=200 GeV
    Zhu, L. L.
    Yang, C. B.
    MODERN PHYSICS LETTERS A, 2007, 22 (15) : 1105 - 1112
  • [23] Strange and multistrange particle production in Au plus Au collisions at √sNN=62.4 GeV
    Aggarwal, M. M.
    Ahammed, Z.
    Alakhverdyants, A. V.
    Alekseev, I.
    Alford, J.
    Anderson, B. D.
    Anson, C. D.
    Arkhipkin, D.
    Averichev, G. S.
    Balewski, J.
    Beavis, D. R.
    Bellwied, R.
    Betancourt, M. J.
    Betts, R. R.
    Bhasin, A.
    Bhati, A. K.
    Bichsel, H.
    Bielcik, J.
    Bielcikova, J.
    Biritz, B.
    Bland, L. C.
    Borowski, W.
    Bouchet, J.
    Braidot, E.
    Brandin, A. V.
    Bridgeman, A.
    Brovko, S. G.
    Bruna, E.
    Bueltmann, S.
    Bunzarov, I.
    Burton, T. P.
    Cai, X. Z.
    Caines, H.
    Sanchez, M. Calderon de la Barca
    Cebra, D.
    Cendejas, R.
    Cervantes, M. C.
    Chajecki, Z.
    Chaloupka, P.
    Chattopadhyay, S.
    Chen, H. F.
    Chen, J. H.
    Chen, J. Y.
    Cheng, J.
    Cherney, M.
    Chikanian, A.
    Choi, K. E.
    Christie, W.
    Chung, P.
    Codrington, M. J. M.
    PHYSICAL REVIEW C, 2011, 83 (02)
  • [24] Particle composition at high PT in Au plus Au collisions at √SNN=200 GeV
    Chujo, T
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2003, 698 : 732 - 734
  • [25] Rapidity dependent particle production in Au plus Au collisions at √sNN=62.4 GeV
    Arsene, I
    ACTA PHYSICA SLOVACA, 2006, 56 (01) : 21 - 26
  • [26] Identified charged particle distributions in Au plus Au collisions at √sNN=9.2 GeV
    Bashir, Inam-ul
    Uddin, Saeed
    Bhat, Riyaz Ahmed
    Bashir, Waseem
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (24):
  • [27] Hydrodynamic source with continuous emission in Au plus Au collisions at √s=200 GeV
    Borysova, MS
    Sinyukov, YM
    Akkelin, SV
    Erazmus, B
    Karpenko, IA
    PHYSICAL REVIEW C, 2006, 73 (02):
  • [28] Dilepton Production in p plus p, Au plus Au collisions at √sNN = 200 GeV and U+U collisions at √sNN=193 GeV
    Brandenburg, James D.
    NUCLEAR PHYSICS A, 2017, 967 : 676 - 679
  • [29] Dielectron production in 200 GeV p+p and Au plus Au collisions at STAR
    Guo, Yi
    30TH WINTER WORKSHOP ON NUCLEAR DYNAMICS (WWND2014), 2014, 535
  • [30] Open charm hadron measurement in p plus p and Au plus Au collisions at √sNN=200 GeV in STAR
    Zhang, Yifei
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (12)