Efficient and Precise Genome Editing in Shewanella with Recombineering and CRISPR/Cas9-Mediated Counter-Selection

被引:30
|
作者
Corts, Anna D. [1 ,2 ]
Thomason, Lynn C. [3 ]
Gill, Ryan T. [4 ]
Gralnick, Jeffrey A. [1 ,2 ]
机构
[1] Univ Minnesota Twin Cities, BioTechnol Inst, St Paul, MN 55108 USA
[2] Univ Minnesota Twin Cities, Dept Plant & Microbial Biol, St Paul, MN 55108 USA
[3] Frederick Natl Lab Canc Res, Basic Sci Program, Frederick, MD 21702 USA
[4] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DTU BIOSUSTAIN, DK-2800 Lyngby, Denmark
来源
ACS SYNTHETIC BIOLOGY | 2019年 / 8卷 / 08期
基金
美国国家卫生研究院;
关键词
genome editing; recombineering; CRISPR/Cas9; Shewanella; EXTRACELLULAR ELECTRON-TRANSFER; CRISPR-CAS; ONEIDENSIS MR-1; IDENTIFICATION; MECHANISMS; EVOLUTION; BIOLOGY; GENES;
D O I
10.1021/acssynbio.9b00188
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Dissimilatory metal-reducing bacteria, particularly those from the genus Shewanella, are of importance for bioremediation of metal contaminated sites and sustainable energy production. However, studies on this species have suffered from a lack of effective genetic tools for precise and high throughput genome manipulation. Here we report the development of a highly efficient system based on single-stranded DNA oligonucleotide recombineering coupled with CRISPR/Cas9-mediated counter-selection. Our system uses two plasmids: a sgRNA targeting vector and an editing vector, the latter harboring both Cas9 and the phage recombinase W3 Beta. Following the experimental analysis of Cas9 activity, we demonstrate the ability of this system to efficiently and precisely engineer different Shewanella strains with an average efficiency of >90% among total transformed cells, compared to similar or equal to 5% by recombineering alone, and regardless of the gene modified. We also show that different genetic changes can be introduced: mismatches, deletions, and small insertions. Surprisingly, we found that use of CRISPR/Cas9 alone allows selection of recombinase-independent S. oneidensis mutations, albeit at lower efficiency and frequency. With synthesized single-stranded DNA as substrates for homologous recombination and Cas9 as a counter-selectable marker, this new system provides a rapid, scalable, versatile, and starless tool that will accelerate progress in Shewanella genomic engineering.
引用
收藏
页码:1877 / 1889
页数:13
相关论文
共 50 条
  • [31] CRISPR/Cas9-mediated genome editing in diploid and tetraploid potatoes
    Aneela Yasmeen
    Allah Bakhsh
    Sara Ajmal
    Momna Muhammad
    Sahar Sadaqat
    Muhammad Awais
    Saira Azam
    Ayesha Latif
    Naila Shahid
    Abdul Qayyum Rao
    Acta Physiologiae Plantarum, 2023, 45
  • [32] Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium
    Muramoto, Tetsuya
    Iriki, Hoshie
    Watanabe, Jun
    Kawata, Takefumi
    CELLS, 2019, 8 (01)
  • [33] CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome
    LI Hao
    QIN Ruiying
    LIU Xiaoshuang
    LIAO Shengxiang
    XU Rongfang
    YANG Jianbo
    WEI Pengcheng
    Rice Science, 2019, 26 (02) : 125 - 128
  • [34] CRISPR/Cas9-mediated genome editing of Schistosoma mansoni acetylcholinesterase
    You, Hong
    Mayer, Johannes U.
    Johnston, Rebecca L.
    Sivakumaran, Haran
    Ranasinghe, Shiwanthi
    Rivera, Vanessa
    Kondrashova, Olga
    Koufariotis, Lambros T.
    Du, Xiaofeng
    Driguez, Patrick
    French, Juliet D.
    Waddell, Nicola
    Duke, Mary G.
    Ittiprasert, Wannaporn
    Mann, Victoria H.
    Brindley, Paul J.
    Jones, Malcolm K.
    McManus, Donald P.
    FASEB JOURNAL, 2021, 35 (01):
  • [35] CRISPR/Cas9-Mediated Multiplexed Genome Editing in Aspergillus oryzae
    Li, Qinghua
    Lu, Jinchang
    Zhang, Guoqiang
    Zhou, Jingwen
    Li, Jianghua
    Du, Guocheng
    Chen, Jian
    JOURNAL OF FUNGI, 2023, 9 (01)
  • [36] CRISPR/Cas9-mediated genome editing in mice: achievable and challenge
    Wu, Lin
    Chen, Laurie
    Chen, Ying
    Wang, Zhenjuan
    Johnson, Sarah
    TRANSGENIC RESEARCH, 2022, 31 (SUPPL 1) : 26 - 27
  • [37] CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome
    LI Hao
    QIN Ruiying
    LIU Xiaoshuang
    LIAO Shengxiang
    XU Rongfang
    YANG Jianbo
    WEI Pengcheng
    Rice Science, 2019, (02) : 125 - 128
  • [38] CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome
    Li Hao
    Qin Ruiying
    Liu Xiaoshuang
    Liao Shengxiang
    Xu Rongfang
    Yang Jianbo
    Wei Pengcheng
    RICE SCIENCE, 2019, 26 (02) : 125 - 128
  • [39] CRISPR/Cas9-mediated genome editing in diploid and tetraploid potatoes
    Yasmeen, Aneela
    Bakhsh, Allah
    Ajmal, Sara
    Muhammad, Momna
    Sadaqat, Sahar
    Awais, Muhammad
    Azam, Saira
    Latif, Ayesha
    Shahid, Naila
    Rao, Abdul Qayyum
    ACTA PHYSIOLOGIAE PLANTARUM, 2023, 45 (02)
  • [40] Advances in CRISPR/Cas9-mediated genome editing on vegetable crops
    Tian, Shou-Wei
    Xing, Si-Nian
    Xu, Yong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2021, 57 (04) : 672 - 682