ON THE NON-NEGATIVE RADIAL SOLUTIONS OF THE TWO DIMENSIONAL BRATU EQUATION

被引:0
|
作者
Christophe Ndjatchi, Mbe Koua [1 ]
Vyridis, Panayotis [1 ]
Martinez, Juan [2 ]
Juan Rosales, J. [3 ]
机构
[1] UPIIZ, Inst Politecn Nacl, Dept Phys & Math, Zacatecas 098160, Zacatecas, Mexico
[2] Zacatecas Autonomous Univ, Dept Math, Zacatecas 098000, Zacatecas, Mexico
[3] DICIS Univ Guanajuato, Dept Elect Engn, Carretera Salamanca Valle Santiago,Km 3-5 1-8 Km, Guanajuato 36885, Mexico
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2021年 / 45卷 / 02期
关键词
Non-linear eigenvalue problem; finite difference method; Gauss-Seidel method; STATISTICAL-MECHANICS; EXISTENCE;
D O I
10.46793/KgJMat2102.275N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary value problem on the unit circle for the Bratu's equation depending on the real parameter mu. From the parameter estimate, the existence of non-negative solution is set. A numerical method is suggested to justify the theoretical result. It is a combination of the adaptation of finite difference and Gauss-Seidel method allowing us to obtain a good approximation of mu(c), with respect to the exact theoretical method mu(c) = lambda = 5.7831859629467.
引用
收藏
页码:275 / 288
页数:14
相关论文
共 50 条
  • [31] Non-negative solutions of a sublinear elliptic problem
    Lopez-Gomez, Julian
    Rabinowitz, Paul H.
    Zanolin, Fabio
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (03)
  • [32] Bifurcation of non-negative solutions for an elliptic system
    Ming Yang
    Pei-hu Shi
    Applied Mathematics and Mechanics, 2008, 29 : 251 - 257
  • [33] TWO DIMENSIONAL NON-NEGATIVE SPARSE PARTIAL LEAST SQUARES FOR FACE RECOGNITION
    Ge, Yongxin
    Huang, Sheng
    Feng, Xin
    Zhang, Jiehui
    Bu, Wenbin
    Yang, Dan
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2014,
  • [34] Two-dimensional non-negative matrix factorization for face representation and recognition
    Zhang, DQ
    Chen, SC
    Zhou, ZH
    ANALYSIS AND MODELLING OF FACES AND GESTURES, PROCEEDINGS, 2005, 3723 : 350 - 363
  • [35] The asymptotic cones of manifolds of roughly non-negative radial curvature
    Mashiko, Y
    Nagano, K
    Otsuka, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2005, 57 (01) : 55 - 68
  • [36] Non-negative Martingale Solutions to the Stochastic Thin-Film Equation with Nonlinear Gradient Noise
    Konstantinos Dareiotis
    Benjamin Gess
    Manuel V. Gnann
    Günther Grün
    Archive for Rational Mechanics and Analysis, 2021, 242 : 179 - 234
  • [37] A Mean-Value Inequality for Non-negative Solutions to the Linearized Monge–Ampère Equation
    Liliana Forzani
    Diego Maldonado
    Potential Analysis, 2009, 30 : 251 - 270
  • [38] A Mean-Value Inequality for Non-negative Solutions to the Linearized Monge-Ampere Equation
    Forzani, Liliana
    Maldonado, Diego
    POTENTIAL ANALYSIS, 2009, 30 (03) : 251 - 270
  • [39] Supercritical semilinear wave equation with non-negative potential
    Georgiev, V
    Heiming, C
    Kubo, H
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) : 2267 - 2303
  • [40] A NECESSARY CONDITION FOR A NON-NEGATIVE SOLUTION OF AN INTEGRAL EQUATION
    Burton, T. A.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2015, 27 (03) : 367 - 374