3D Cardiac Segmentation Using Temporal Correlation of Radio Frequency Ultrasound Data

被引:0
|
作者
Nillesen, Maartje M. [1 ]
Lopata, Richard G. P. [1 ]
Huisman, Henkjan J. [2 ]
Thijssen, Johan M. [1 ]
Kapusta, Livia [3 ]
de Korte, Chris L. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pediat, Clin Phys Lab, Nijmegen, Netherlands
[2] Dept Radiol, Worcester, MA 01655 USA
[3] Univ Nijmegen Med Ctr, Dept Pediatr Radboud, Pediatr Cardiol, Nijmegen, Netherlands
关键词
IMAGE SEGMENTATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-automatic segmentation of the myocardium in 3D echo-graphic images may substantially support, clinical diagnosis of heart disease. Particularly in children with congenital heart disease, segmentation should be based on the echo features solely since a priori knowledge on the shape of the heart; cannot be used. Segmentation of echocardiographic images is challenging because of the poor echogenicity contrast between blood and the myocardium in some regions and the inherent speckle noise from randomly backscattered echoes. Phase information present in the radio frequency (rf) ultrasound data might yield useful, additional features in these regions. A semi-3D technique was used to determine maximum temporal cross-correlation values locally from the rf data. To segment the endocardial surface, maximum cross-correlation values were used as additional external force in a deformable model approach and were tested against and combined with adaptive filtered, demodulated rf data. The method was tested on full volume images (Philips, iE33) of four healthy children and evaluated by comparison with contours obtained from manual segmentation.
引用
收藏
页码:927 / +
页数:2
相关论文
共 50 条
  • [31] Improved boundary segmentation of skin lesions in high-frequency 3D ultrasound
    Sciolla, B.
    Delachartre, P.
    Cowell, L.
    Dambry, T.
    Guibert, B.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 87 : 302 - 310
  • [32] Automatic segmentation of the cerebellum of fetuses on 3D ultrasound images, using a 3D Point Distribution Model
    Gutierrez Becker, Benjamin
    Arambula Cosio, Fernando
    Guzman Huerta, Mario E.
    Andres Benavides-Serralde, Jesus
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4731 - 4734
  • [33] 3D ultrasound tissue motion tracking using correlation search
    Morsy, AA
    von Ramm, OT
    ULTRASONIC IMAGING, 1998, 20 (03) : 151 - 159
  • [34] Chestwall segmentation in 3D breast ultrasound using a deformable volume model
    Huisman, Henkjan
    Karssemeijer, Nico
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2007, 4584 : 245 - +
  • [35] Carotid Artery Segmentation in 3D Ultrasound Images Using a Hybrid Framework
    Wang, Xiaotong
    Zhang, Yaonan
    PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2012, : 698 - 703
  • [36] Cardiac Chamber Volumetric Assessment Using 3D Ultrasound - A Review
    Pedrosa, Joao
    Barbosa, Daniel
    Almeida, Nuno
    Bernard, Olivier
    Bosch, Johan
    D'hooge, Jan
    CURRENT PHARMACEUTICAL DESIGN, 2016, 22 (01) : 105 - 121
  • [37] Automatic segmentation and registration of abdominal aortic aneurysms using 3D ultrasound
    van Disseldorp, E. M. J.
    van Dronkelaar, J. J.
    Pluim, J. P. W.
    van de Vosse, Frans
    van Sambeek, M. R. H. M.
    Lopata, R. G. P.
    2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
  • [38] 3D ultrasound image segmentation using multiple incomplete feature sets
    Fan, L
    Herrington, DM
    Santago, P
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 948 - 956
  • [39] Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning
    Hesse, Linde S.
    Aliasi, Moska
    Moser, Felipe
    Haak, Monique C.
    Xie, Weidi
    Jenkinson, Mark
    Namburete, Ana I. L.
    NEUROIMAGE, 2022, 254
  • [40] Segmentation of 3D Ovarian Ultrasound Volumes using Continuous Wavelet Transform
    Cigale, B.
    Zazula, D.
    11TH MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2007, VOLS 1 AND 2, 2007, 16 (1-2): : 1017 - 1020