Using Administrative Data to Identify Mental Illness: What Approach Is Best?

被引:129
|
作者
Frayne, Susan M. [1 ,2 ,6 ]
Miller, Donald R. [3 ,4 ]
Sharkansky, Erica J. [5 ]
Jackson, Valerie W. [1 ,6 ]
Wang, Fei [3 ,4 ]
Halanych, Jewell H. [7 ]
Berlowitz, Dan R. [3 ,4 ]
Kader, Boris [4 ]
Rosen, Craig S. [1 ,9 ]
Keane, Terence M. [5 ,8 ]
机构
[1] VA Palo Alto Hlth Care Syst, Ctr Hlth Care Evaluat, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Ctr Primary Care & Outcomes Res, Stanford, CA 94305 USA
[3] Boston Univ, Sch Publ Hlth, Boston, MA 02215 USA
[4] VA Bedford, Ctr Hlth Qual Outcomes & Econ Res, Bedford, MA USA
[5] VA Boston Healthcare Syst, Natl Ctr PTSD, Boston, MA USA
[6] Stanford Univ, Div Gen Internal Med, Stanford, CA 94305 USA
[7] Univ Alabama Birmingham, Birmingham, AL USA
[8] Boston Univ, Sch Med, Boston, MA 02215 USA
[9] VA Palo Alto Hlth Care Syst, Natl Ctr PTSD, Menlo Pk, CA 94025 USA
关键词
quality of health care; health services research/methods; algorithms; databases; factual; mental disorders; MEDICAL-RECORDS; HEALTH-CARE; PSYCHIATRIC DIAGNOSES; DIABETES CARE; SELF-REPORT; VETERANS; DEPRESSION; DISORDERS; OUTPATIENTS; AGREEMENT;
D O I
10.1177/1062860609346347
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The authors estimated the validity of algorithms for identification of mental health conditions (MHCs) in administrative data for the 133 068 diabetic patients who used Veterans Health Administration (VHA) nationally in 1998 and responded to the 1999 Large Health Survey of Veteran Enrollees. They compared various algorithms for identification of MHCs from International Classification of Diseases, 9th Revision (ICD-9) codes with self-reported depression, posttraumatic stress disorder, or schizophrenia from the survey. Positive predictive value (PPV) and negative predictive value (NPV) for identification of MHC varied by algorithm (0.65-0.86, 0.68-0.77, respectively). PPV was optimized by requiring >= 2 instances of MHC ICD-9 codes or by only accepting codes from mental health visits. NPV was optimized by supplementing VHA data with Medicare data. Findings inform efforts to identify MHC in quality improvement programs that assess health care disparities. When using administrative data in mental health studies, researchers should consider the nature of their research question in choosing algorithms for MHC identification.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 50 条
  • [31] Assessing mental health from registry data: what is the best proxy?
    Beerten, S. G.
    De Pauw, R.
    Van Pottelbergh, G.
    Casas, L.
    Vaes, B.
    [J]. EUROPEAN JOURNAL OF PUBLIC HEALTH, 2023, 33
  • [32] Dental visits in Medicaid-enrolled youth with mental illness: an analysis of administrative claims data
    Stockbridge, Erica L.
    Dhakal, Eleena
    Griner, Stacey B.
    Loethen, Abiah D.
    West, Joseph F.
    Vera, Joseph W.
    Nandy, Karabi
    [J]. BMC HEALTH SERVICES RESEARCH, 2020, 20 (01)
  • [33] Dental visits in Medicaid-enrolled youth with mental illness: an analysis of administrative claims data
    Erica L. Stockbridge
    Eleena Dhakal
    Stacey B. Griner
    Abiah D. Loethen
    Joseph F. West
    Joseph W. Vera
    Karabi Nandy
    [J]. BMC Health Services Research, 20
  • [34] An innovative approach to identify past exposure to asbestos integrating questionnaire information and administrative data
    Fontana, Luca
    Massari, Stefania
    Maisonneuve, Patrick
    Persechino, Benedetta
    Marinaccio, Alessandro
    Rampinelli, Cristiano
    Spaggiari, Lorenzo
    Veronesi, Giulia
    Iavicoli, Sergio
    [J]. HEALTH POLICY, 2021, 125 (02) : 246 - 253
  • [35] Public conceptions of mental illness in 1950 and 1996: What is mental illness and is it to be feared?
    Phelan, JC
    Link, BG
    Stueve, A
    Pescosolido, BA
    [J]. JOURNAL OF HEALTH AND SOCIAL BEHAVIOR, 2000, 41 (02) : 188 - 207
  • [36] Accuracy of Diagnosis Codes to Identify Febrile Young Infants Using Administrative Data
    Aronson, Paul L.
    Williams, Derek J.
    Thurm, Cary
    Tieder, Joel S.
    Alpern, Elizabeth R.
    Nigrovic, Lise E.
    Schondelmeyer, Amanda C.
    Balamuth, Fran
    Myers, Angela L.
    McCulloh, Russell J.
    Alessandrini, Evaline A.
    Shah, Samir S.
    Browning, Whitney L.
    Hayes, Katie L.
    Feldman, Elana A.
    Neuman, Mark I.
    [J]. JOURNAL OF HOSPITAL MEDICINE, 2015, 10 (12) : 787 - 793
  • [37] Development of an Algorithm to Identify Patients with Multiple Myeloma Using Administrative Claims Data
    Princic, Nicole
    Gregory, Chris
    Willson, Tina
    Mahue, Maya
    Felici, Diana
    Werther, Winifred
    Lenhart, Gregory
    Foley, Kathy
    [J]. BLOOD, 2015, 126 (23)
  • [38] ALGORITHMS TO IDENTIFY SECOND BREAST CANCER EVENTS USING ADMINISTRATIVE DATA.
    Chubak, J.
    Yu, O.
    Pocobelli, G.
    Lamerato, L.
    Webster, J.
    Prout, M. N.
    Yood, M. Ulcickas
    Barlow, W. E.
    Buist, D. S. M.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 : S42 - S42
  • [39] Using administrative population data to identify people with intellectual disabilities and study mortality
    Cuypers, Maarten
    Tobi, Hilde
    Naaldenberg, Jenneken
    Leusink, Geraline
    [J]. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES, 2021, 34 (05) : 1301 - 1301
  • [40] Using administrative data to identify diagnosed post-traumatic stress disorder
    Frayne, S. M.
    Miller, D. R.
    Halanych, J. H.
    Wang, F.
    Sharkansky, E.
    Kader, B.
    Keane, T.
    Pogach, L.
    Rosen, C. S.
    Berlowitz, D. R.
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 2006, 21 : 159 - 159