Multiagent Deep-Reinforcement-Learning-Based Virtual Resource Allocation Through Network Function Virtualization in Internet of Things

被引:35
|
作者
Shah, Hurmat Ali [1 ]
Zhao, Lian [1 ]
机构
[1] Ryerson Univ, Dept Elect Comp & Biomed Engn, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Deep reinforcement learning (DRL); Internet of Things (IoT); machine learning (ML); network virtualization; optimization; Q-learning (QL); resource allocation;
D O I
10.1109/JIOT.2020.3022572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Resource allocation is a significant task in the emerging area of Internet of Things (IoT). IoT devices are usually low-cost devices with limited computational power and capabilities for long term communication. In this article, the network function virtualization (NFV) technique is used to access resources of the network and a reinforcement learning (RL) algorithm is used to solve the problem of resource allocation in IoT networks. The traffic of the IoT network uses the substrate network which is available through NFV for its data transmission. The data transmission needs of the IoT network are translated to virtual requests and service function chain (SFC) are mapped to the substrate network to serve the requests. The problem of SFC placement while meeting the system constraints of the IoT network is a nonconvex problem. In the proposed deep RL (DRL)-based resource allocation, the virtual layer acts as a common repository of the network resources. The optimization problem of SFC placement under the system constraints of IoT networks can be formulated as a Markovian decision process (MDP). The MDP problem is solved through a multiagent DRL algorithm where each agent serves an SFC. Two Q-networks are considered, where one Q-network solves the SFC placement problem while the other updates weights of the Q-network through keeping track of long-term policy changes. The virtual agents serving SFCs interact with the environment, receive reward collectively and update the policy by using the learned experiences. We show that the proposed scheme can solve the optimization problem of SFC placement through adequate reward design, state, and action space formulation. Simulation results demonstrate that the multiagent DRL scheme outperforms the reference schemes in terms of utility gained as measured through different network parameters.
引用
下载
收藏
页码:3410 / 3421
页数:12
相关论文
共 50 条
  • [41] Multiagent Reinforcement-Learning-Aided Service Function Chain Deployment for Internet of Things
    Zhu, Yuchao
    Yao, Haipeng
    Mai, Tianle
    He, Wenji
    Zhang, Ni
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 15674 - 15684
  • [42] Dynamic Channel Allocation for Satellite Internet of Things via Deep Reinforcement Learning
    Liu, Jiahao
    Zhao, Baokang
    Xin, Qin
    Liu, Hua
    2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 465 - 470
  • [43] Energy-Efficient Computation Offloading Based on Multiagent Deep Reinforcement Learning for Industrial Internet of Things Systems
    Chouikhi, Samira
    Esseghir, Moez
    Merghem-Boulahia, Leila
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (07) : 12228 - 12239
  • [44] Reinforcement Learning Assisted Bandwidth Aware Virtual Network Resource Allocation
    Zhang, Peiying
    Su, Yu
    Wang, Jingjing
    Jiang, Chunxiao
    Hsu, Ching-Hsien
    Shen, Shigen
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4111 - 4123
  • [45] Deep Reinforcement Learning for Resource Demand Prediction and Virtual Function Network Migration in Digital Twin Network
    Liu, Qinghai
    Tang, Lun
    Wu, Ting
    Chen, Qianbin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) : 19102 - 19116
  • [46] Deep Reinforcement Learning Based Resource Allocation for URLLC User-Centric Network
    Hu, Fajin
    Zhao, Junhui
    Liao, Jieyu
    Zhang, Huan
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 522 - 526
  • [47] Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning
    Wang, Tianfu
    Shen, Li
    Fan, Qilin
    Xu, Tong
    Liu, Tongliang
    Xiong, Hui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (03) : 1001 - 1015
  • [48] Deep Reinforcement Learning for Resource Allocation with Network Slicing in Cognitive Radio Network*
    Yuan, Siyu
    Zhang, Yong
    Qie, Wenbo
    Ma, Tengteng
    Li, Sisi
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (03) : 979 - 999
  • [49] A Deep Reinforcement Learning Based Approach for Energy-Efficient Channel Allocation in Satellite Internet of Things
    Zhao, Baokang
    Liu, Jiahao
    Wei, Ziling
    You, Ilsun
    IEEE ACCESS, 2020, 8 : 62197 - 62206
  • [50] Virtual Network Embedding Based on Hierarchical Cooperative Multiagent Reinforcement Learning
    Lim, Hyun-Kyo
    Ullah, Ihsan
    Kim, Ju-Bong
    Han, Youn-Hee
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8552 - 8568