A criterion for the concircular mobility of quasi-Sasakian manifolds

被引:1
|
作者
Kirichenko, V. F. [1 ]
Pol'kina, E. A. [1 ]
机构
[1] Moscow State Pedag Univ, Moscow, Russia
关键词
quasi-Sasakian structure; concircular transformation of a metric; Fialkow space; cosymplectic manifold; Sasakian manifold; Kenmotsu manifold; GEOMETRY;
D O I
10.1134/S0001434609090077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following question is considered: Which quasi-Sasakian (cosymplectic, Sasakian, or proper quasi-Sasakian) structures admit nontrivial concircular transformations of their metrics (i.e., determine Fialkow spaces), and under what conditions. It is proved that any cosymplectic manifold is a Fialkow space. Necessary and sufficient conditions for a Sasakian or a quasi-Sasakian manifold to be a Fialkow space are obtained. A fairly large class of Sasakian manifolds which are not Fialkow spaces is described.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [31] 3-DIMENSIONAL QUASI-SASAKIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTION
    De, Uday Chand
    Yildiz, Ahmet
    Turan, Mine
    Acet, Bilal E.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (01): : 127 - 137
  • [32] GENERALIZED η-RICCI SOLITONS ON QUASI-SASAKIAN 3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION
    Azami, Shahroud
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 655 - 667
  • [33] Normal contact CR-submanifolds of a quasi-Sasakian manifold
    Calin, C
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 257 - 270
  • [34] On P-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor
    Ozgur, Cihan
    Tripathi, Mukut Mani
    TURKISH JOURNAL OF MATHEMATICS, 2007, 31 (02) : 171 - 179
  • [35] On contact CR-warped product submanifolds of a quasi-Sasakian manifold
    Tran Quoc Binh
    De, Avik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (1-2): : 123 - 137
  • [36] 3-Quasi-Sasakian manifolds
    Beniamino Cappelletti Montano
    Antonio De Nicola
    Giulia Dileo
    Annals of Global Analysis and Geometry, 2008, 33 : 397 - 409
  • [37] ON QUASI-PARA-SASAKIAN MANIFOLDS
    Zamkovoy, Simeon
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (04): : 440 - 447
  • [38] Anti-quasi-Sasakian manifolds
    Di Pinto, D.
    Dileo, G.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 64 (01)
  • [39] 3-quasi-Sasakian manifolds
    Cappelletti Montano, Beniamino
    De Nicola, Antonio
    Dileo, Giulia
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (04) : 397 - 409
  • [40] 3-Quasi-Sasakian manifolds
    Beniamino Cappelletti Montano
    Antonio De Nicola
    Giulia Dileo
    Annals of Global Analysis and Geometry, 2009, 35 : 445 - 448