Lens-shaped surfaces and C2 subdivision

被引:1
|
作者
Karciauskas, Kestutis [2 ]
Peters, Jorg [1 ]
机构
[1] Univ Florida, Gainesville, FL 32611 USA
[2] Vilnius State Univ, Vilnius, Lithuania
关键词
Lens-shaped; C-2; Subdivision surface; Re-meshing; Polar;
D O I
10.1007/s00607-009-0060-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Lens-shaped surfaces (with vertices of valence 2) arise for example in automatic quad-remeshing. Applying standard Catmull-Clark subdivision rules to a vertex of valence 2, however, does not yield a C-1 surface in the limit. When correcting this flaw by adjusting the vertex rule, we discover a variant whose characteristic ring is z -> z(2). Since this conformal ring is of degree bi-2 rather than bi-3, it allows constructing a subdivision algorithm that works directly on the control net and generates C-2 limit surfaces of degree bi-4 for lens-shaped surfaces. To further improve shape, a number of re-meshing and re-construction options are discussed indicating that a careful approach pays off. Finally, we point out the analogy between characteristic configurations and the conformal maps z(4/n), cos z and e(z)
引用
收藏
页码:171 / 183
页数:13
相关论文
共 50 条
  • [1] Lens-shaped surfaces and C2 subdivision
    Kestutis Karčiauskas
    Jorg Peters
    [J]. Computing, 2009, 86 : 171 - 183
  • [2] Flow through a lens-shaped duct
    Wang, C. Y.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2008, 75 (03): : 0345031 - 0345034
  • [3] Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature
    Pietro Baldi
    Emanuele Haus
    Carlo Mantegazza
    [J]. Mathematische Annalen, 2019, 375 : 1857 - 1881
  • [4] Top-shaped asteroids as Lens-shaped bodies
    Dobrovolskis, Anthony R.
    Lissauer, Jack J.
    Alvarellos, Jose L.
    [J]. ICARUS, 2023, 405
  • [5] Rapidly contracting subdivision yields finite, effectively C2 surfaces
    Karciauskas, Kestutis
    Peters, Jorg
    [J]. COMPUTERS & GRAPHICS-UK, 2018, 74 : 182 - 190
  • [6] The Dynamics of Quasigeostrophic Lens-Shaped Vortices
    Storer, Benjamin A.
    Poulin, Francis J.
    Menesguen, Claire
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2018, 48 (04) : 937 - 957
  • [7] Interfacial Configurations of Lens-Shaped Particles
    Kyu Hwan Choi
    Tae Seok Seo
    Bum Jun Park
    [J]. Macromolecular Research, 2020, 28 : 953 - 959
  • [8] Interfacial Configurations of Lens-Shaped Particles
    Choi, Kyu Hwan
    Seo, Tae Seok
    Park, Bum Jun
    [J]. MACROMOLECULAR RESEARCH, 2020, 28 (10) : 953 - 959
  • [9] Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature
    Baldi, Pietro
    Haus, Emanuele
    Mantegazza, Carlo
    [J]. MATHEMATISCHE ANNALEN, 2019, 375 (3-4) : 1857 - 1881
  • [10] Curvature evolution of nonconvex lens-shaped domains
    Bellettini, Giovanni
    Novaga, Matteo
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 656 : 17 - 46