Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature

被引:1
|
作者
Baldi, Pietro [1 ]
Haus, Emanuele [2 ]
Mantegazza, Carlo [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Via Cintia, I-80126 Naples, Italy
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
关键词
TRIPLE JUNCTIONS; MOTION; EVOLUTION; NETWORKS; FLOW; GRAPHS;
D O I
10.1007/s00208-019-01890-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We rigorously show the existence of a rotationally and centrally symmetric "lensshaped" cluster of three surfaces, meeting at a smooth common circle, forming equal angles of 120 degrees, self-shrinking under the motion by mean curvature.
引用
收藏
页码:1857 / 1881
页数:25
相关论文
共 50 条
  • [1] Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature
    Pietro Baldi
    Emanuele Haus
    Carlo Mantegazza
    [J]. Mathematische Annalen, 2019, 375 : 1857 - 1881
  • [2] On the entire self-shrinking solutions to Lagrangian mean curvature flow
    Rongli Huang
    Zhizhang Wang
    [J]. Calculus of Variations and Partial Differential Equations, 2011, 41 : 321 - 339
  • [3] On the entire self-shrinking solutions to Lagrangian mean curvature flow
    Huang, Rongli
    Wang, Zhizhang
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) : 321 - 339
  • [4] On the entire self-shrinking solutions to Lagrangian mean curvature flow II
    Rongli Huang
    Qianzhong Ou
    Wenlong Wang
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61
  • [5] F-STABILITY FOR SELF-SHRINKING SOLUTIONS TO MEAN CURVATURE FLOW
    Andrews, Ben
    Li, Haizhong
    Wei, Yong
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (05) : 757 - 777
  • [6] On the entire self-shrinking solutions to Lagrangian mean curvature flow II
    Huang, Rongli
    Ou, Qianzhong
    Wang, Wenlong
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [7] COMPACTNESS AND RIGIDITY OF SELF-SHRINKING SURFACES
    Lee, Tang-Kai
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2023, 27 (03) : 301 - 314
  • [8] Curvature evolution of nonconvex lens-shaped domains
    Bellettini, Giovanni
    Novaga, Matteo
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 656 : 17 - 46
  • [9] A POINTWISE APPROACH TO RIGIDITY OF ALMOST GRAPHICAL SELF-SHRINKING SOLUTIONS OF MEAN CURVATURE FLOWS
    Li, Dongsheng
    Xu, Yingfeng
    Yuan, Yu
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (07) : 3057 - 3061
  • [10] GEOMETRY OF LACRANCIAN SELF-SHRINKING TORI AND APPLICATIONS TO THE PIECEWISE LAGRANGIAN MEAN CURVATURE FLOW
    Chen, Jingyi
    Ma, John Man Shun
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (01) : 227 - 264