Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization

被引:22
|
作者
Lejeune, Miguel A. [1 ]
Shen, Siqian [2 ]
机构
[1] George Washington Univ, Washington, DC USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Multi-portfolio optimization; Probabilistic constraint; Variable reliability; Multi-objective programming; Boolean programming; DISCRETE-DISTRIBUTIONS; CONSTRUCTION; UNCERTAINTY; POINTS;
D O I
10.1016/j.ejor.2016.01.039
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a class of multi-objective probabilistically constrained programs (MOPCP) with a joint probabilistic constraint and a variable risk level. We consider two cases with only a random right-hand side vector or a multi-row random technology matrix, and propose a Boolean modeling framework to derive new mixed-integer linear programs (MILP) that are either equivalent reformulations or inner approximations of MOPCP, respectively. Via testing randomly generated MOPCP instances, we demonstrate modeling insights pertaining to the most suitable MILP, to the trade-offs between conflicting objectives of cost/revenue and reliability, and to the parameter scalarization determining relative importance of each objective. We then focus on several MOPCP variants of a multi-portfolio financial optimization problem to implement a downside risk measure, which can be used in a centralized or decentralized investment context. We study the impact of modeling parameters on the portfolios, show, via a cross-validation study, robustness of MOPCP, and perform a comparative analysis of the optimal investment decisions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:522 / 539
页数:18
相关论文
共 50 条
  • [41] Portfolio optimization using multi-objective genetic algorithms
    Skolpadungket, Prisadarng
    Dahal, Keshav
    Harnpornchai, Napat
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 516 - +
  • [42] Multi-Objective Portfolio Optimization of Electricity Markets Participation
    Faia, Ricardo
    Pinto, Tiago
    Vale, Zita
    Manuel Corchado, Juan
    [J]. 2018 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2018,
  • [43] Evolutionary Multi-objective Portfolio Optimization in Practical Context
    S.C.Chiam
    A.Al Mamum
    [J]. Machine Intelligence Research, 2008, (01) : 67 - 80
  • [44] Evolutionary Multi-objective Portfolio Optimization in Practical Context
    Chiam, S. C.
    Tan, K. C.
    Al Mamum, A.
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2008, 5 (01) : 67 - 80
  • [45] Dynamic Constrained Boundary Method for Constrained Multi-Objective Optimization
    Wang, Qiuzhen
    Liang, Zhibing
    Zou, Juan
    Yin, Xiangdong
    Liu, Yuan
    Hu, Yaru
    Xia, Yizhang
    [J]. MATHEMATICS, 2022, 10 (23)
  • [46] Fuzzy Multi-Objective Portfolio Optimization Considering Investment Return and Investment Risk
    Srizongkhram, Shayarath
    Suthamanondh, Pisacha
    Manitayakul, Kittitath
    Shirahada, Kunio
    Chiadamrong, Navee
    [J]. International Journal of Fuzzy System Applications, 2022, 11 (01)
  • [47] A multi-objective evolutionary algorithm for steady-state constrained multi-objective optimization problems
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    [J]. APPLIED SOFT COMPUTING, 2021, 101
  • [48] Variable Interaction in Multi-objective Optimization Problems
    Li, Ke
    Omidvar, Mohammad Nabi
    Deb, Kalyanmoy
    Yao, Xin
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 399 - 409
  • [49] A multi-preference-based constrained multi-objective optimization algorithm
    Feng, Xue
    Ren, Zhengyun
    Pan, Anqi
    Hong, Juchen
    Tong, Yinghao
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83
  • [50] A framework to use crop models for multi-objective constrained optimization of irrigation strategies
    Cheviron, Bruno
    Vervoort, R. Willem
    Albasha, Rami
    Dairon, Romain
    Le Priol, Camille
    Mailhol, Jean-Claude
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 86 : 145 - 157