Estuarine flood modelling using Artificial Neural Networks

被引:0
|
作者
Fazel, Seyyed Adel Alavi [1 ]
Blumenstein, Michael [1 ]
Mirfenderesk, Hamid [2 ]
Tomlinson, Rodger [3 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Gold Coast Campus, Nathan, Qld 4111, Australia
[2] Gold Coast City Council, Gold Coast, Australia
[3] Griffith Univ, Sch Environm, Gold Coast Campus, Nathan, Qld 4111, Australia
关键词
RAINFALL-RUNOFF MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of water levels at estuaries poses a significant challenge for modelling of floods due to the influence of tidal effects. In this study, a two-stage forecasting system is proposed. In the first stage, the tidal portion of the available records is used to develop a tidal prediction system. The predictions of the first stage are used for flood modelling in the second. Experimental results suggest that the proposed flood modelling approach is advantageous for forecasting flood levels with more than 1 hour lead times.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 50 条
  • [41] Wear of railway tyre steels modelling using artificial neural networks
    WITASZEK, Miroslaw
    WITASZEK, Kazimierz
    [J]. Tribologia, 2020, 294 (06): : 77 - 85
  • [42] Modelling the Concentration Distributions of Aerosol Puffs Using Artificial Neural Networks
    Cao, Xiaoying
    Roy, Gilles
    Andrews, William S.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2010, 136 (01) : 83 - 103
  • [43] Modelling of floorpan wear in passenger vehicles using artificial neural networks
    Gonera, Jaroslaw
    Vrublevskyi, Oleksandr
    Napiorkowski, Jerzy
    [J]. ENGINEERING FAILURE ANALYSIS, 2021, 127
  • [44] Modelling underground mine ventilation characteristics using artificial neural networks
    Karagianni, Maria
    Benardos, Andreas
    [J]. PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 3136 - 3144
  • [45] A Priori Sub-grid Modelling Using Artificial Neural Networks
    Prat, Alvaro
    Sautory, Theophile
    Navarro-Martinez, S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (06) : 397 - 417
  • [46] STATISTICAL MODELLING IN ECOLOGICAL MANAGEMENT USING THE ARTIFICIAL NEURAL NETWORKS (ANNs)
    Mihajlovic, Ivan
    Nikolic, Dorde
    Strbac, Nada
    Zivkovic, Zivan
    [J]. SERBIAN JOURNAL OF MANAGEMENT, 2010, 5 (01) : 39 - 50
  • [47] Extended rainfall-runoff modelling using artificial neural networks
    Minns, AW
    [J]. HYDROINFORMATICS '96, VOLS 1 AND 2, 1996, : 207 - 213
  • [48] Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
    Saberian, Aminmohammad
    Hizam, H.
    Radzi, M. A. M.
    Ab Kadir, M. Z. A.
    Mirzaei, Maryam
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
  • [49] Modelling hydraulic jumps with artificial neural networks
    Omid, MH
    Omid, M
    Varaki, ME
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2005, 158 (02) : 65 - 70
  • [50] Artificial neural networks for infant mortality modelling
    Gismondi, RC
    Almeida, RMVR
    Infantosi, AFC
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2002, 69 (03) : 237 - 247