Classifying Emotions in Twitter Messages Using a Deep Neural Network

被引:0
|
作者
da Silva, Isabela R. R. [1 ]
Lima, Ana C. E. S. [1 ]
Pasti, Rodrigo [1 ]
de Castro, Leandro N. [1 ]
机构
[1] Univ Presbiteriana Mackenzie, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Deep learning; Emotion classification; Sentiment analysis;
D O I
10.1007/978-3-319-99608-0_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many people use social media nowadays to express their emotions or opinions about something. This paper proposes the use of a deep learning network architecture for emotion classification in Twitter messages, using the six emotions model of Ekman: happiness, sadness, anger, fear, disgust and surprise. We collected the tweets from a labeled dataset that contains about 2.5 million tweets and used the Word2Vec predictive model to learn the relations of each word and transform them into numbers that the deep network receives as input. Our approach achieved a 63% accuracy with all the classes and 77% accuracy on a binary classification scheme.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 50 条
  • [31] Analyzing Social Network Data Using Deep Neural Networks: A Case Study Using Twitter Posts
    Liao, Wen-Hung
    Huang, Yen-Ting
    Yang, Tsu-Hsuan
    Wu, Yi-Chieh
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019), 2019, : 237 - 238
  • [32] A Deep Learning Approach for Classifying Vulnerability Descriptions Using Self Attention Based Neural Network
    P. R. Vishnu
    P. Vinod
    Suleiman Y. Yerima
    [J]. Journal of Network and Systems Management, 2022, 30
  • [33] A Deep Learning Approach for Classifying Vulnerability Descriptions Using Self Attention Based Neural Network
    Vishnu, P. R.
    Vinod, P.
    Yerima, Suleiman Y.
    [J]. JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [34] Classifying Malware Represented as Control Flow Graphs using Deep Graph Convolutional Neural Network
    Yan, Jiaqi
    Yan, Guanhua
    Jin, Dong
    [J]. 2019 49TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN 2019), 2019, : 52 - 63
  • [35] Classifying multi-category images using Deep Learning : A Convolutional Neural Network Model
    Bandhu, Ardhendu
    Roy, Sanjiban Sekhar
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 915 - 919
  • [36] Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information
    Alharbi, Ahmed Sulaiman M.
    de Doncker, Elise
    [J]. COGNITIVE SYSTEMS RESEARCH, 2019, 54 : 50 - 61
  • [37] Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network
    Zhang, Ziqi
    Robinson, David
    Tepper, Jonathan
    [J]. SEMANTIC WEB (ESWC 2018), 2018, 10843 : 745 - 760
  • [38] Deep Sentiment Analysis of Twitter Data Using a Hybrid Ghost Convolution Neural Network Model
    Al-Abyadh, Mohammed Hasan Ali
    Iesa, Mohamed A. M.
    Azeem, Hani Abdel Hafeez Abdel
    Singh, Devesh Pratap
    Kumar, Pardeep
    Abdulamir, Mohamed
    Jalali, Asadullah
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [40] Categorization of emotions in dog behavior based on the deep neural network
    Kowalczuk, Zdzislaw
    Czubenko, Michal
    Zmuda-Trzebiatowska, Weronika
    [J]. COMPUTATIONAL INTELLIGENCE, 2022, 38 (06) : 2116 - 2133