Classifying Emotions in Twitter Messages Using a Deep Neural Network

被引:0
|
作者
da Silva, Isabela R. R. [1 ]
Lima, Ana C. E. S. [1 ]
Pasti, Rodrigo [1 ]
de Castro, Leandro N. [1 ]
机构
[1] Univ Presbiteriana Mackenzie, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Deep learning; Emotion classification; Sentiment analysis;
D O I
10.1007/978-3-319-99608-0_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many people use social media nowadays to express their emotions or opinions about something. This paper proposes the use of a deep learning network architecture for emotion classification in Twitter messages, using the six emotions model of Ekman: happiness, sadness, anger, fear, disgust and surprise. We collected the tweets from a labeled dataset that contains about 2.5 million tweets and used the Word2Vec predictive model to learn the relations of each word and transform them into numbers that the deep network receives as input. Our approach achieved a 63% accuracy with all the classes and 77% accuracy on a binary classification scheme.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 50 条
  • [1] Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages
    Stojanovski, Dario
    Strezoski, Gjorgji
    Madjarov, Gjorgji
    Dimitrovski, Ivica
    Chorbev, Ivan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (24) : 32213 - 32242
  • [2] Deep Neural Network for Gender-Based Violence Detection on Twitter Messages
    Castorena, Carlos M.
    Abundez, Itzel M.
    Alejo, Roberto
    Granda-Gutierrez, Everardo E.
    Rendon, Erendira
    Villegas, Octavio
    [J]. MATHEMATICS, 2021, 9 (08)
  • [3] Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages
    Dario Stojanovski
    Gjorgji Strezoski
    Gjorgji Madjarov
    Ivica Dimitrovski
    Ivan Chorbev
    [J]. Multimedia Tools and Applications, 2018, 77 : 32213 - 32242
  • [4] Classifying the pole of an amplitude using a deep neural network
    Sombillo, Denny Lane B.
    Ikeda, Yoichi
    Sato, Toru
    Hosaka, Atsushi
    [J]. PHYSICAL REVIEW D, 2020, 102 (01):
  • [5] Classifying Milk Yield Using Deep Neural Network
    Boga, Mustafa
    Cevik, Kerim Kursat
    Burgut, Aykut
    [J]. PAKISTAN JOURNAL OF ZOOLOGY, 2020, 52 (04) : 1319 - 1325
  • [6] Twitter Sentiment Analysis using Deep Neural Network
    Wazery, Yaser Maher
    Mohammed, Hager Saleh
    Houssein, Essam Halim
    [J]. 2018 14TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2018, : 177 - 182
  • [7] Classifying Suicide-Related Content and Emotions on Twitter Using Graph Convolutional Neural Networks
    Schoene, Annika M.
    Bojanic, Lana
    Nghiem, Minh-Quoc
    Hunt, Isabelle M.
    Ananiadou, Sophia
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 1791 - 1802
  • [8] Classifying COVID-19 Disinformation on Twitter using a Convolutional Neural Network
    Nabeel, Mohamad
    Grosse, Christine
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 264 - 272
  • [9] Classifying emotion in Twitter using Bayesian network
    Asriadie, Muhammad Surya
    Mubarok, Mohamad Syahrul
    Adiwijaya
    [J]. INTERNATIONAL CONFERENCE ON DATA AND INFORMATION SCIENCE (ICODIS), 2018, 971
  • [10] Twitter Sentiment Analysis Using Deep Convolutional Neural Network
    Stojanovski, Dario
    Strezoski, Gjorgji
    Madjarov, Gjorgji
    Dimitrovski, Ivica
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2015), 2015, 9121 : 726 - 737