ICA separation of functional components from dynamic cardiac PET data

被引:1
|
作者
Magadán-Méndez, M [1 ]
Kivimäki, A [1 ]
Ruotsalainen, U [1 ]
机构
[1] Tampere Univ Technol, Inst Signal Proc, Tampere Grad Sch Informat Sci, FIN-33101 Tampere, Finland
关键词
image segmentation; noise separation; numerical phantom; PET heart data;
D O I
10.1109/NSSMIC.2003.1352426
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The aim of this study was to improve detection of different heart tissues, and specially their boundaries, in (H2O)-O-15 PET (Positron Emission Tomography) heart images. This problem was considered as a Blind Source Separation problem. In order to solve it we applied ICA (Independent Component Analysis) on dynamic image data and measured projection profiles (sinograms). The testing was based on two kinds of data: a simple dynamic numerical phantom and human heart data acquired during resting state. The sensitivity of ICA to noise was examined on phantom data, where ICA seemed to be less sensitive to noise on sinogram data than on image data. On cardiac rest data, the results were in line with the results on phantom data.
引用
收藏
页码:2618 / 2622
页数:5
相关论文
共 50 条
  • [21] Blind source separation analysis of PET dynamic data: a simple method with exciting MR-PET applications
    Ana-Maria Oros-Peusquens
    Nuno da Silva
    Carolin Weiss
    Gabrielle Stoffels
    Hans Herzog
    Karl J Langen
    N Jon Shah
    [J]. EJNMMI Physics, 1 (Suppl 1)
  • [22] Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power
    Glasser, Matthew F.
    Coalson, Timothy S.
    Bijsterbosch, Janine D.
    Harrison, Samuel J.
    Harms, Michael P.
    Anticevic, Alan
    Van Essen, David C.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2019, 197 : 435 - 438
  • [23] The physical meaning of independent components and artifact removal of hyperspectral data from mars using ICA
    Hauksdottir, H.
    Jutten, C.
    Schmidt, F.
    Chanussot, J.
    Benediktsson, J. A.
    Doute, S.
    [J]. 2006 7TH NORDIC SIGNAL PROCESSING SYMPOSIUM, 2006, : 226 - +
  • [24] Removal of ballistocardiogram artifact from EEG data acquired in the MRI scanner: selection of ICA components
    Koskinen, Miika
    Vartiainen, Nuutti
    [J]. 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 5220 - +
  • [25] Kinetic Modeling of the Dynamic PET Brain Data Using Blind Source Separation Methods
    Tichy, Ondrej
    Smidl, Vaclav
    [J]. 2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 329 - 334
  • [26] Characterization of ICA for Scattering From Cylindrical Components of Vegetation
    Yang, Chao
    Du, Yang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1902 - 1906
  • [27] Minimax estimation of functional principal components from noisy discretized functional data
    Belhakem, Ryad
    Picard, Franck
    Rivoirard, Vincent
    Roche, Angelina
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024,
  • [28] Robust reconstruction of physiological parameters from dynamic PET data
    Liu, Huafeng
    Jian, Yiqiang
    Shi, Pengcheng
    [J]. 2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 177 - +
  • [29] Simulation of dynamic PET data from real MR acquisitions
    Tsoumpas, Charalampos
    Buerger, Christian
    King, Andrew P.
    Keereman, Vincent
    Vandenberghe, Stefaan
    Schulz, Volkmar
    Schaeffter, Tobias
    Marsden, Paul K.
    [J]. 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 3065 - +
  • [30] Simultaneous estimation and segmentation from projection data in dynamic PET
    Cui, Jianan
    Yu, Haiqing
    Chen, Shuhang
    Chen, Yunmei
    Liu, Huafeng
    [J]. MEDICAL PHYSICS, 2019, 46 (03) : 1245 - 1259