This article describes the design, development, and evaluation of an undergraduate learning module that builds student's skills on how data analysis and numerical modeling can be used to analyze and design water resources engineering projects. The module follows a project-based approach by using a hydrologic restoration project in a coastal basin in south Louisiana, USA. The module has two main phases, a feasibility analysis phase and a hydraulic design phase, and follows an active learning approach where students perform a set of quantitative learning activities that involve extensive data and modeling analyses. The module is designed using open resources, including online datasets, hydraulic simulation models and geographical information system software that are typically used by the engineering industry and research communities. Upon completing the module, students develop skills that involve model formulation, parameter calibration, sensitivity analysis, and the use of data and models to assess and design a hydrologic a proposed hydrologic engineering project. Guided by design-based research framework, the implementation and evaluation of the module focused primarily on assessing students' perceptions of the module usability and its design attributes, their perceived contribution of the module to their learning, and their overall receptiveness of the module and how it impacts their interest in the subject and future careers. Following an improvement-focused evaluation approach, design attributes that were found most critical to students included the use of user-support resources and self-checking mechanisms. These aspects were identified as key features that facilitate students' self-learning and independent completion of tasks, while still enriching their learning experiences when using data and modeling-rich applications. Evaluation data showed that the following attributes contributed the most to students' learning and potential value for future careers: application of modern engineering data analysis; use of real-world hydrologic datasets; and appreciation of uncertainties and challenges imposed by data scarcity. The evaluation results were used to formulate a set of guiding principles on how to design effective and conducive undergraduate learning experiences that adopt technology-enhanced and data and modeling-based strategies, on how to enhance users' experiences with free and open-source engineering analysis tools, and on how to strike a pedagogical balance between module complexity, student engagement, and flexibility to fit within existing curricula limitations.