Clustering and Regression to Impute Missing Values of Robot Performance

被引:1
|
作者
Arroyo, Angel [1 ]
Basurto, Nuno [1 ]
Cambra, Carlos [1 ]
Herrero, Alvaro [1 ]
机构
[1] Univ Burgos, Grp Inteligencia Computac Aplicada GICAP, Dept Ingn Informat, Escuela Politecn Super, Av Cantabria S-N, Burgos 09006, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020 | 2020年 / 12344卷
关键词
Hybrid intelligent system; Machine learning; Clustering; Regression; Missing values; Robot software; CLASSIFICATION;
D O I
10.1007/978-3-030-61705-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is widely claimed that a major challenge in Robotics is to get reliable systems while both response and down times are minimized. In keeping with this idea, present paper proposes the application of a Hybrid Artificial Intelligence System (HAIS) to preprocess data with the aim of improving the detection of performance anomalies. One of the main problems when analyzing real-life data is the presence of missing values. It is usually solved by removing incomplete data, what causes a loss of information that may be critical in some domains. As an alternative, present paper proposes the application of regression models to impute those missing values. Prediction is optimized by generating personalized models on previously clustered data. Experiments are run on a public and up-to-date dataset that contains information about anomalies affecting the component-based software of a robot. The obtained results validate the proposed HAIS, as it successfully imputes missing values from the different features in the original dataset.
引用
收藏
页码:86 / 94
页数:9
相关论文
共 50 条
  • [11] Modelling method with missing values based on clustering and support vector regression
    Wang, Ling
    Fu, Dongmei
    Li, Qing
    Mu, Zhichun
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (01) : 142 - 147
  • [12] Web-based knowledge aquisition to impute missing values for classification
    Tang, N
    Vemuri, VR
    IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2004), PROCEEDINGS, 2004, : 124 - 130
  • [13] Suitable domains for using ordered attribute trees to impute missing values
    Lobo, OO
    Numano, M
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2001, E84D (02) : 262 - 270
  • [14] Optimal clustering with missing values
    Boluki, Shahin
    Dadaneh, Siamak Zamani
    Qian, Xiaoning
    Dougherty, Edward R.
    BMC BIOINFORMATICS, 2019, 20 (Suppl 12)
  • [15] Optimal Clustering with Missing Values
    Boluki, Shahin
    Dadaneh, Siamak Zamani
    Qian, Xiaoning
    Dougherty, Edward R.
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 593 - 594
  • [16] Coresets for Clustering with Missing Values
    Braverman, Vladimir
    Jiang, Shaofeng H. -C.
    Krauthgamer, Robert
    Wu, Xuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [17] Optimal clustering with missing values
    Shahin Boluki
    Siamak Zamani Dadaneh
    Xiaoning Qian
    Edward R. Dougherty
    BMC Bioinformatics, 20
  • [18] To Impute or not to Impute? Missing Data in Treatment Effect Estimation
    Berrevoets, Jeroen
    Imrie, Fergus
    Kyono, Trent
    Jordon, James
    van der Schaar, Mihaela
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [19] MISSING VALUES IN QUADRATIC REGRESSION
    REED, AH
    BIOMETRICS, 1969, 25 (04) : 801 - &
  • [20] To Tolerate or To Impute Missing Values in V2X Communications Data?
    Razavi-Far, Roozbeh
    Wan, Daoming
    Saif, Mehrdad
    Mozafari, Niloofar
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11442 - 11452