Least-squares mixed finite element method for Sobolev equations

被引:0
|
作者
Gu, HM
Yang, DP
机构
[1] Qingdao Inst Chem Tech, Dept Comp Sci, Qingdao 266042, Peoples R China
[2] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
来源
关键词
least squares; mixed finite element method; error estimates;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A least-squares mixed finite element (LSM) method is formulated for a class of Sobolev equations in two dimensional domains. Optimal L-2 -error estimates are derived under the standard regularity assumption on the finite element partition (the LBB-condition is not required). Optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.
引用
收藏
页码:505 / 517
页数:13
相关论文
共 50 条
  • [41] On the velocity-pressure-vorticity least-squares mixed finite element method for the 3D Stokes equations
    Duan, HY
    Liang, GP
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) : 2114 - 2130
  • [42] Least-squares finite-element lattice Boltzmann method
    Li, YS
    LeBoeuf, EJ
    Basu, PK
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [43] Domain decomposition for least-squares finite element methods for the Stokes equations
    Ye, X
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (01) : 45 - 53
  • [44] ANALYSIS OF LEAST-SQUARES FINITE-ELEMENT METHODS FOR THE STOKES EQUATIONS
    BOCHEV, PB
    GUNZBURGER, MD
    [J]. MATHEMATICS OF COMPUTATION, 1994, 63 (208) : 479 - 506
  • [45] Least-squares spectral element method applied to the Euler equations
    Gerritsma, Marc
    van der Bas, Rokus
    De Maerschalck, Bart
    Koren, Barry
    Deconinck, Herman
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (09) : 1371 - 1395
  • [46] Issues related to least-squares finite element methods for the Stokes equations
    Deang, JM
    Gunzburger, MD
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (03): : 878 - 906
  • [47] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    [J]. MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [48] Least-squares mixed finite element methods for nonlinear parabolic problems
    Yang, DP
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (02) : 153 - 164
  • [49] Multilevel boundary functionals for least-squares mixed finite element methods
    Starke, G
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) : 1065 - 1077
  • [50] Superconvergence of least-squares mixed finite element for symmetric elliptic problems
    Chen, YP
    Zhang, MP
    [J]. APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) : 195 - 204