prime ring;
semiprime ring;
Banach space;
standard operator algebra;
derivation;
Jordan derivation;
H*-algebra;
D O I:
10.1556/SScMath.2006.1005
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we prove the following result. Let X be a real or complex Banach space, let L(X) be the algebra of all bounded linear operators on X, and let A(X) C L(X) be a standard operator algebra. Suppose we have a linear mapping D : A(X) - L(X) satisfying the relation D(A(3)) = D(A)A(2) + AD(A)A + A(2)D(A), for all A is an element of A(X). In this case D is of the form D(A) = AB - BA, for all A is an element of A(X) and some B is an element of L(X). We apply this result, which generalizes a classical result of Chernoff, to semisimple H*-algebras.
机构:
Univ Maribor, FNM, Dept Math & Comp Sci, Koroska Cesta 160, Maribor 2000, SloveniaUniv Maribor, FNM, Dept Math & Comp Sci, Koroska Cesta 160, Maribor 2000, Slovenia
Sirovnik, Nejc
Vukman, Joso
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Dept Maribor, Maribor 2000, SloveniaUniv Maribor, FNM, Dept Math & Comp Sci, Koroska Cesta 160, Maribor 2000, Slovenia