In situ growth of an opal-like TiO2 electron transport layer by atomic layer deposition for perovskite solar cells

被引:7
|
作者
Lu, Hao [1 ]
Gu, Bangkai [1 ]
Fang, Song [1 ]
机构
[1] Suzhou Univ Sci & Technol, Inst Mat Sci & Devices, Sch Mat Sci & Engn, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium dioxide - Atoms - Crystal structure - Photonic crystals - Perovskite solar cells - Electron transport properties - Perovskite;
D O I
10.1039/d0se01558j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An orderly-arranged photonic crystal structure can produce a trapping effect to improve light utilization. Herein, an atomic layer deposition system and different sizes of polystyrene colloidal spheres were employed to in situ prepare an opal-like titanium oxide (TiO2) mesoporous electron transport layer for perovskite solar cells. Initially, a TiO2 layer was deposited on the spheres through an atomic layer deposition (ALD) system, and then the substrates were annealed to obtain hollow opal-like TiO2 structures. The as-prepared perovskite solar cells with the controlled opal-like TiO2 electron transport layer show an average power conversion efficiency (PCE) of 17.5 +/- 0.55, and the same ALD-prepared planar solar cells show an average PCE of 14.9 +/- 0.53. This work reveals that the opal-like nanostructure offers an efficient approach to high-performance perovskite solar cells.
引用
收藏
页码:880 / 885
页数:6
相关论文
共 50 条
  • [21] Fabrication and TCAD simulation of TiO2 nanorods electron transport layer based perovskite solar cells
    Jarwal, Deepak Kumar
    Mishra, Ashwini Kumar
    Kumar, Amit
    Ratan, Smrity
    Singh, Abhinav Pratap
    Kumar, Chandan
    Mukherjee, Bratindranath
    Jit, Satyabrata
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 140 (140)
  • [22] Mesoporous BaTiO3/TiO2 Double Layer for Electron Transport in Perovskite Solar Cells
    Okamoto, Yuji
    Suzuki, Yoshikazu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (26): : 13995 - 14000
  • [23] Tantalum-Doped TiO2 Prepared by Atomic Layer Deposition and Its Application in Perovskite Solar Cells
    Hsu, Chia-Hsun
    Chen, Ka-Te
    Lin, Ling-Yan
    Wu, Wan-Yu
    Liang, Lu-Sheng
    Gao, Peng
    Qiu, Yu
    Zhang, Xiao-Ying
    Huang, Pao-Hsun
    Lien, Shui-Yang
    Zhu, Wen-Zhang
    NANOMATERIALS, 2021, 11 (06)
  • [24] TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells
    Sun, Xiaolin
    Li, Lu
    Shen, Shanshan
    Wang, Fang
    NANOMATERIALS, 2023, 13 (02)
  • [25] Rational tuning of SnO2 electron transport layer grown by atomic layer deposition for performance improvement of perovskite solar cells
    Shin, Seungha
    Kim, Yeongchan
    Park, Sungho
    Bae, Young Hwan
    Noh, Jin-Seo
    SOLAR ENERGY, 2024, 277
  • [26] Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells
    Yang, Zu-Po
    Cheng, Hsyi-En
    Chang, I-Hsuan
    Yu, Ing-Song
    APPLIED SCIENCES-BASEL, 2016, 6 (08):
  • [27] High efficiency perovskite solar cells using DC sputtered compact TiO2 electron transport layer
    Hayali, Ahmed
    Alkaisi, Maan M.
    EPJ PHOTOVOLTAICS, 2021, 12
  • [28] Preparation of TiO2 electron transport layer by magnetron sputtering and its effect on the properties of perovskite solar cells
    Zhu, Hua
    Zhang, Tian-hao
    Wei, Quan-ya
    Yu, Shi-jin
    Gao, Hao
    Guo, Ping-chun
    Li, Jia-ke
    Wang, Yan-xiang
    ENERGY REPORTS, 2022, 8 : 3166 - 3175
  • [29] TiO2 Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
    Zhao, Wenhao
    Guo, Pengfei
    Wu, Jiahao
    Lin, Deyou
    Jia, Ning
    Fang, Zhiyu
    Liu, Chong
    Ye, Qian
    Zou, Jijun
    Zhou, Yuanyuan
    Wang, Hongqiang
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [30] Effect of Annealing Temperature on Tantalum-Doped TiO2 as Electron Transport Layer in Perovskite Solar Cells
    Chen, Ka-Te
    Hsu, Chia-Hsun
    Jiang, Shi-Cong
    Liang, Lu-Sheng
    Gao, Peng
    Qiu, Yu
    Wu, Wan-Yu
    Zhang, Sam
    Zhu, Wen-Zhang
    Lien, Shui-Yang
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (03) : 1149 - 1154