Evaluations of sums involving harmonic numbers and binomial coefficients

被引:5
|
作者
Wang, Weiping [1 ]
Xu, Ce [2 ,3 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou, Zhejiang, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen, Fujian, Peoples R China
[3] Kyushu Univ Motooka, Multiple Zeta Res Ctr, Nishi Ku, Fukuoka, Fukuoka 8190389, Japan
基金
中国国家自然科学基金;
关键词
Euler-type sums; harmonic numbers; binomial coefficients; Riemann zeta function; EULER SUMS; IDENTITIES; DUALITY; SERIES;
D O I
10.1080/10236198.2019.1647184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by the Faa di Bruno formula, we establish the decompositions of two general fractions involving the reciprocals of products of binomial coefficients. Using the decompositions, we discuss the evaluations of some Euler-type sums involving harmonic numbers and binomial coefficients, such as S pi 1,q (k) = Sigma(infinity)(n=1) H-n((pi 1)) n(q)Pi(p)(i)=1 ((n+ki)(ki)), Sq pi 1(k) = Sigma(infinity)(n=1) n=1 nqHn(pi 1) n(q)Pi(p)(i)=1 ((n+ki)(ki)), and some other forms. We present some explicit evaluations as examples and provide the Maple package to compute the sums and . It can be found that this work gives a unified approach to such sums and generalizes many known results in the literature.
引用
收藏
页码:1007 / 1023
页数:17
相关论文
共 50 条
  • [21] BINOMIAL SUMS INVOLVING CATALAN NUMBERS
    Chu, Wenchang
    Kilic, Emrah
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1221 - 1225
  • [22] BINOMIAL SUMS WITH HARMONIC AND FIBONACCI NUMBERS
    Duran, Omer
    Omur, Nese
    Koparal, Sibel
    [J]. JOURNAL OF SCIENCE AND ARTS, 2024, (02): : 389 - 398
  • [23] Sums Involving the Inverses of Binomial Coefficients
    Yang, Jin-Hua
    Zhao, Feng-Zhen
    [J]. JOURNAL OF INTEGER SEQUENCES, 2006, 9 (04)
  • [24] NEW SERIES INVOLVING HARMONIC NUMBERS AND SQUARED CENTRAL BINOMIAL COEFFICIENTS
    Campbell, John Maxwell
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (08) : 2513 - 2544
  • [25] q-Analogs of Identities Involving Harmonic Numbers and Binomial Coefficients
    Mansour, Toufik
    Shattuck, Mark
    Song, Chunwei
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2012, 7 (01): : 22 - 36
  • [26] On Certain Sums of Stirling Numbers with Binomial Coefficients
    Gould, H. W.
    Kwong, Harris
    Quaintance, Jocelyn
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (09)
  • [27] Identities for the harmonic numbers and binomial coefficients
    Sofo, Anthony
    Srivastava, H. M.
    [J]. RAMANUJAN JOURNAL, 2011, 25 (01): : 93 - 113
  • [28] Some congruences on harmonic numbers and binomial sums
    Bing He
    [J]. Periodica Mathematica Hungarica, 2017, 74 : 67 - 72
  • [29] On sums involving products of three binomial coefficients
    Sun, Zhi-Wei
    [J]. ACTA ARITHMETICA, 2012, 156 (02) : 123 - 141
  • [30] Incomplete Finite Binomial Sums of Harmonic Numbers
    Kollar, Richard
    [J]. JOURNAL OF INTEGER SEQUENCES, 2024, 27 (02)