The Richtmyer-Meshkov instability in magnetohydrodynamics

被引:38
|
作者
Wheatley, V. [1 ]
Samtaney, R. [2 ]
Pullin, D. I. [3 ]
机构
[1] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
[2] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA
关键词
TAYLOR INSTABILITY;
D O I
10.1063/1.3194303
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In ideal magnetohydrodynamics (MHD), the Richtmyer-Meshkov instability can be suppressed by the presence of a magnetic field. The interface still undergoes some growth, but this is bounded for a finite magnetic field. A model for this flow has been developed by considering the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This was accomplished by analytically solving the linearized initial value problem in the framework of ideal incompressible MHD. To assess the performance of the model, its predictions are compared to results obtained from numerical simulation of impulse driven linearized, shock driven linearized, and nonlinear compressible MHD for a variety of cases. It is shown that the analytical linear model collapses the data from the simulations well. The predicted interface behavior well approximates that seen in compressible linearized simulations when the shock strength, magnetic field strength, and perturbation amplitude are small. For such cases, the agreement with interface behavior that occurs in nonlinear simulations is also reasonable. The effects of increasing shock strength, magnetic field strength, and perturbation amplitude on both the flow and the performance of the model are investigated. This results in a detailed exposition of the features and behavior of the MHD Richtmyer-Meshkov flow. For strong shocks, large initial perturbation amplitudes, and strong magnetic fields, the linear model may give a rough estimate of the interface behavior, but it is not quantitatively accurate. In all cases examined the accuracy of the model is quantified and the flow physics underlying any discrepancies is examined. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3194303]
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244
  • [22] Richtmyer-Meshkov instability and the dynamics of the magnetosphere
    Wu, CC
    Roberts, PH
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (06) : 655 - 658
  • [23] Relativistic effects on the Richtmyer-Meshkov instability
    Mohseni, F.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW D, 2014, 90 (12):
  • [24] Richtmyer-Meshkov Instability of Laminar Flame
    Tyaktev, A. A.
    Pavlenko, A., V
    Anikin, N. B.
    Bugaenko, I. L.
    Piskunov, Yu A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2020, 61 (02) : 157 - 161
  • [25] Richtmyer-Meshkov Instability in Nonlinear Optics
    Jia, Shu
    Huntley, Laura I.
    Fleischer, Jason W.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [26] Theory of the Ablative Richtmyer-Meshkov Instability
    Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, United States
    Phys Rev Lett, 10 (2091-2094):
  • [27] Scaling the incompressible Richtmyer-Meshkov instability
    Cotrell, David L.
    Cook, Andrew W.
    PHYSICS OF FLUIDS, 2007, 19 (07)
  • [28] Richtmyer-Meshkov Instability of Laminar Flame
    A. A. Tyaktev
    A. V. Pavlenko
    N. B. Anikin
    I. L. Bugaenko
    Yu. A. Piskunov
    Journal of Applied Mechanics and Technical Physics, 2020, 61 : 157 - 161
  • [29] Energy transfer in the Richtmyer-Meshkov instability
    Thornber, Ben
    Zhou, Ye
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [30] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun
    State Key Laboratory of Scientific and Engineering Computing
    Science China Mathematics, 2004, (S1) : 234 - 244