Inference of stress-strength reliability for two-parameter of exponentiated Gumbel distribution based on lower record values

被引:1
|
作者
Fayyazishishavan, Ehsan [1 ]
Depren, Serpil Kilic [1 ]
机构
[1] Yildiz Tech Univ, Dept Stat, Istanbul, Turkey
来源
PLOS ONE | 2021年 / 16卷 / 04期
关键词
LESS-THAN Y); MODEL;
D O I
10.1371/journal.pone.0249028
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The two-parameter of exponentiated Gumbel distribution is an important lifetime distribution in survival analysis. This paper investigates the estimation of the parameters of this distribution by using lower records values. The maximum likelihood estimator (MLE) procedure of the parameters is considered, and the Fisher information matrix of the unknown parameters is used to construct asymptotic confidence intervals. Bayes estimator of the parameters and the corresponding credible intervals are obtained by using the Gibbs sampling technique. Two real data set is provided to illustrate the proposed methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Estimation of stress-strength reliability from exponentiated Fr,chet distribution
    Rao, G. Srinivasa
    Rosaiah, K.
    Babu, M. Sridhar
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 86 (9-12): : 3041 - 3049
  • [22] Estimation of Stress-Strength Reliability from Exponentiated Inverse Rayleigh Distribution
    Rao, G. Srinivasa
    Mbwambo, Sauda
    Josephat, P. K.
    [J]. INTERNATIONAL JOURNAL OF RELIABILITY QUALITY & SAFETY ENGINEERING, 2019, 26 (01):
  • [23] Inference for the stress-strength reliability for the two-parameter Burr type X under Type I and Type II censoring
    Luo, Li
    Surles, James G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (05) : 1713 - 1718
  • [24] Estimation of stress-strength reliability from exponentiated Fréchet distribution
    G. Srinivasa Rao
    K. Rosaiah
    M. Sridhar Babu
    [J]. The International Journal of Advanced Manufacturing Technology, 2016, 86 : 3041 - 3049
  • [25] Stress-strength reliability inference for the Pareto distribution with outliers
    Nooghabi, Mehdi Jabbari
    Naderi, Mehrdad
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [26] Inference on Stress-Strength Reliability for Lomax Exponential Distribution
    Pandit, Parameshwar, V
    Kavitha, N.
    [J]. STATISTICS AND APPLICATIONS, 2024, 22 (01): : 231 - 242
  • [27] Product Spacing of Stress-Strength under Progressive Hybrid Censored for Exponentiated-Gumbel Distribution
    Alshenawy, R.
    Sabry, Mohamed A. H.
    Almetwally, Ehab M.
    Elomngy, Hisham M.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2973 - 2995
  • [28] Reliability inference for a multicomponent stress-strength model based on Kumaraswamy distribution
    Wang, Liang
    Dey, Sanku
    Tripathi, Yogesh Mani
    Wu, Shuo-Jye
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [29] On Reliability in a Multicomponent Stress-Strength Generalized Rayleigh Model Based on Record Values
    Pak, A.
    Jafari, A. A.
    Khoolenjani, N. B.
    [J]. JOURNAL OF TESTING AND EVALUATION, 2020, 48 (06) : 4588 - 4607
  • [30] Estimation of reliability in a multicomponent stress-strength system for the exponentiated moment-based exponential distribution
    Rao G.S.
    Bhatti F.A.
    Aslam M.
    Albassam M.
    [J]. Algorithms, 2019, 12 (02):