Bayesian estimation of parameters of a damped sinusoidal model by a Markov chain Monte Carlo method

被引:10
|
作者
Barone, P [1 ]
Ragona, R [1 ]
机构
[1] TELECOM ITALIA MOBILE, ROME, ITALY
关键词
D O I
10.1109/78.599950
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dynamic Monte Carlo method is proposed to compute the posterior means and covariances of the parameters of a damped sinusoidal model when an informative prior distribution is known. The Bayesian framework provides a sound mathematical ground, which possibly allows cane to overcome the approximations commonly used to cope with this difficult problem. Some simulations results are provided, which support the conclusion that the prior information can also be significantly improved when the data have a low signal-to-noise ratio.
引用
收藏
页码:1806 / 1814
页数:9
相关论文
共 50 条
  • [21] A Mixture Rasch Model With a Covariate: A Simulation Study via Bayesian Markov Chain Monte Carlo Estimation
    Dai, Yunyun
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2013, 37 (05) : 375 - 396
  • [22] More Stable Estimation of the STARTS Model: A Bayesian Approach Using Markov Chain Monte Carlo Techniques
    Ludtke, Oliver
    Robitzsch, Alexander
    Wagner, Jenny
    [J]. PSYCHOLOGICAL METHODS, 2018, 23 (03) : 570 - 593
  • [23] Transitional markov chain monte carlo method for Bayesian model updating, model class selection, and model averaging
    Ching, Jianye
    Chen, Yi-Chu
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2007, 133 (07) : 816 - 832
  • [24] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [25] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [26] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [27] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478
  • [28] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [29] Bayesian generalised ensemble Markov chain Monte Carlo
    Frellsen, Jes
    Winther, Ole
    Ghahramani, Zoubin
    Ferkinghoff-Borg, Jesper
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 408 - 416
  • [30] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    [J]. MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11