General solution of the Bagley-Torvik equation with fractional-order derivative

被引:54
|
作者
Wang, Z. H. [1 ,2 ]
Wang, X. [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Inst Vibrat Engn Res, Nanjing 210016, Peoples R China
[2] PLA Univ Sci & Technol, Inst Sci, Nanjing 211101, Peoples R China
基金
中国国家自然科学基金;
关键词
Vibration equation; Fractional-order derivative; General solution; Initializing constants; Characteristic root; ADOMIAN DECOMPOSITION METHOD;
D O I
10.1016/j.cnsns.2009.05.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the general solution of the Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative. This fractional-order differential equation is changed into a sequential fractional-order differential equation (SFDE) with constant coefficients. Then the general solution of the SFDE is expressed as the linear combination of fundamental solutions that are in terms of alpha-exponential functions, a kind of functions that play the same role of the classical exponential function. Because the number of fundamental solutions of the SFDE is greater than 2, the general solution of the SFDE depends on more than two free (independent) constants. This paper shows that the general solution of the Bagley-Torvik equation involves actually two free constants only, and it can be determined fully by the initial displacement and initial velocity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1279 / 1285
页数:7
相关论文
共 50 条
  • [1] Numerical solution of a fractional-order Bagley-Torvik equation by quadratic finite element method
    Ali, Hazrat
    Kamrujjaman, Md.
    Shirin, Afroza
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 351 - 367
  • [2] Analytical Solution of General Bagley-Torvik Equation
    Labecca, William
    Guimaraes, Osvaldo
    Piqueira, Jose Roberto C.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [3] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Aminikhah, Hossein
    Sheikhani, Amir Hosein Refahi
    Houlari, Tahereh
    Rezazadeh, Hadi
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 760 - 765
  • [4] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Hossein Aminikhah
    Amir Hosein Refahi Sheikhani
    Tahereh Houlari
    Hadi Rezazadeh
    [J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (03) : 760 - 765
  • [5] An investigation of fractional Bagley-Torvik equation
    Fazli, Hossein
    Nieto, Juan J.
    [J]. OPEN MATHEMATICS, 2019, 17 : 499 - 512
  • [6] An Investigation of Fractional Bagley-Torvik Equation
    Zafar, Azhar Ali
    Kudra, Grzegorz
    Awrejcewicz, Jan
    [J]. ENTROPY, 2020, 22 (01) : 28
  • [7] Numerical Method For Fractional Bagley-Torvik Equation
    Ding, Qinxu
    Wong, Patricia J. Y.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [8] Numerical solution of the Bagley-Torvik equation
    Diethelm, K
    Ford, NJ
    [J]. BIT NUMERICAL MATHEMATICS, 2002, 42 (03) : 490 - 507
  • [9] Numerical Solution of the Bagley-Torvik Equation
    K. Diethelm
    J. Ford
    [J]. BIT Numerical Mathematics, 2002, 42 (3) : 490 - 507
  • [10] The Numerical Solution of the Bagley-Torvik Equation With Fractional Taylor Method
    Krishnasamy, V. S.
    Razzaghi, M.
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (05):